Test Case Generation


Introduction

Testing aims at finding errors in a system or program. A set of tests is also called a test suite. Test case generation is the process of generating test suites for a particular system. Model-based Testing (MBT) is a technique to generate test suites for a system from a model describing the system. One usually tries to generate test suite which satisfies a given coverage criterion, e.g., ensuring that parts of the model are exhaustively exercised. Indeed, exhaustive testing of the implemented system is usually infeasible (because it would require infinitely many or way too many test cases), but one would like to increase the likelihood that the selected test suite uncovers errors in the implemented system.

In our case we have that

  • a model is a formal model written in B, Event-B or even TLA+ and Z
  • a test-case is a sequence of operations (or events) along with parameter values for the operations and concrete values for the constants and initial values of the formal model. One can also specify that a valid test case must end in a given class of states (specified by a predicate on the formal model's state).
  • the coverage criterion is currently restricted to operation/event coverage, i.e., trying to ensure that every operation/event of the model is exercised by at least one test case.

ProB has two main algorithms to find suites of test cases:

  • model-checking based and
  • constraint-based


Constraint based test case generation allows to explore the state space for a machine and generate traces of operations that cover certain user defined operations and meet a given condition to end the search. (See also the bounded model checker of ProB which uses this technique to find invariant violations.)

We will use the following B Machine as an example, which is stored in a file called simplecounter.mch.

MACHINE SimpleCounter
DEFINITIONS MAX==4
VARIABLES count
INVARIANT
 count: 1..MAX
INITIALISATION count := 1
OPERATIONS
  Increase(y) = PRE y: 1..(MAX-count) THEN
     count := count+y
  END;
  Reset = BEGIN count := 1 END
END

How To run

To start the test case generation there are two alternatives. We can either provide all settings as command line arguments or in a test description file.

From the command line

From the command line there are six relevant settings to configure the test case generation

-cbc_tests Depth EndPredicate File
        generate test cases by constraint solving with maximum
        length Depth, the last state satisfies EndPredicate
        and the test cases are written to File

-cbc_cover Operation
        when generating CBC test cases, Operation should be covered. Each
        operation to be covered needs to be specified separately.

-cbc_cover_match PartialOpName
        just like -cbc_cover but for all operations whose name contains "PartialOpName"

-cbc_cover_final
        specifies that the events specified above should only be used as final events in test-cases.
        This option can lead to a considerable reduction in running time of the algorithm.

-p CLPFD TRUE
        flag to enable the CLPFD constraint solver to search the state space, which is highly recommended.
-p TIME_OUT x
        time out in milliseconds to abort the exploration of each possible trace

Example: To generate test cases that cover the event Increase in the machine above, leading to a state where count = MAX-1 is true and the explored paths do not have a depth of more than 5 operations we would specify this as follows, where we use CLPFD and have a timeout of 2000 ms. for each explored trace:

./probcli.sh simplecounter.mch -cb_tests 5 count=MAX-1 test_results.xml -cb_cover Increase -p CLPFD true -p TIME_OUT 2000

The generated test cases are stored in a file called test_results.xml. You can provide the empty filename

''

; in this case no file is generated.

Test Generation Description

The configuration for the test case generation can also be provided as an XML file. The format is shown below:

<test-generation-description>
  <output-file>OUTPUT FILE NAME</output-file>
  <event-coverage>
    <event>EVENT 1</event>
    <event>EVENT 2</event>
  </event-coverage>
  <target>TARGET PREDICATE</target>
  <!-- the parameters section contains parameters that are very ProB-specific -->
  <parameters>
    <!-- the maximum depth is the maximum length of a trace of operations/event,
         the algorithm might stop earlier when all events are covered -->
    <maximum-depth>N</maximum-depth>
    <!-- any ProB preference can be set that is listed when calling "probcli -help -v" -->
    <!-- other probably interesting preferences are MININT, MAXINT and TIME_OUT -->
  </parameters>
</test-generation-description>

Example: For our example the description file would look as follows.

<test-generation-description>
  <output-file>test_results.xml</output-file>
  <event-coverage>
    <event>Increase</event>
  </event-coverage>
  <target>count = MAX - 1</target>
  <parameters>
    <maximum-depth>5</maximum-depth>
    <!-- Please note: TIME_OUT (in milliseconds) is not a global time out, it is per trace -->
    <preference name="CLPFD" value="true"/>
    <!-- Please note: TIME_OUT (in milliseconds) is not a global time out, it is per trace -->
    <preference name="TIME_OUT" value="2000"/>
  </parameters>
</test-generation-description>

Assuming the test description above is stored in file named simple_counter_test_description.xml, we start the test case generation with the following call.

./probcli.sh simplecounter.mch -test_description simple_counter_test_description.xml