SimB is a simulator built on top of ProB. It is available in the latest SNAPSHOT version in the new JavaFX based user interface ProB2-UI (https://github.com/hhu-stups/prob2_ui), The modeler can write SimB annotations for a formal model to simulate it. Examples are available at https://github.com/favu100/SimB-examples. Furthermore, it is then possible to validate probabilistic and timing properties with statistical validation techniques such as hypothesis testing and estimation.
Start SimB via "Open Simulator" in the "Advanced" Menu after opening a machine.
Now, you can open a SimB file (JSON format) controlling the underlying formal model.
A SimB file consists of probabilistic and timing elements to simulate the model. Within these elements, the modeler can user B expressions which are evaluated on the current state.
In the following, an example for a SimB file controlling a Traffic Lights for cars and pedestrians is shown:
{ "activations": [ {"id":"$initialise_machine", "execute":"$initialise_machine", "activating":"choose"}, {"id":"choose", "chooseActivation":{"cars_ry": "0.8", "peds_g": "0.2"}}, {"id":"cars_ry", "execute":"cars_ry", "after":5000, "activating":"cars_g"}, {"id":"cars_g", "execute":"cars_g", "after":500, "activating":"cars_y"}, {"id":"cars_y", "execute":"cars_y", "after":5000, "activating":"cars_r"}, {"id":"cars_r", "execute":"cars_r", "after":500, "activating":"choose"}, {"id":"peds_g", "execute":"peds_g", "after":5000, "activating":"peds_r"}, {"id":"peds_r", "execute":"peds_r", "after":5000, "activating":"choose"} ] }
The SimB file always contains an activations field storing a list of probabilistic and timing elements to control the simulation. Probabilistic values are always evaluated to ensure that the sum of all possibilities is always 1. Otherwise an error will be thrown at runtime. There are two types of activations: direct activation and probabilistic choice. All activations are identified by their id.
A direct activation activates an event to be executed in the future. It requires the fields id, and execute to be defined. All other fields can be defined optionally.
{ "id": ... "execute": ... "after": ... "activating": ... "activationKind": ... "additionalGuards": ... "fixedVariables": .... "probabilisticVariables": .... "priority": ... }
A probabilistic choice selects an event to be executed in the future. It requires the two fields id, and chooseActivation. chooseActivation is a Map storing Key-Value pairs where activations (identified by their id) are mapped to a probability. It is possible to chain multiple probabilistic choices together, but eventually, a direct activation must be reached.
{ "id": ... "chooseActivation": ... }
Using a SimB file, the modeler can play a single simulation on the underlying model in real-time. The modeler can then manually check whether the model behaves as desired. Combining VisB and SimB, a simulation can be seen as an animated picture similar to a GIF picture. This gives the domain expert even a better understanding of the model.
A Traffic Light example (based on the SimB file shown in Using_SimB ) simulating the first 21 seconds is shown below.
Based on a single simulation, the modeler can generate a timed trace which is also stored in the SimB format. Afterwards, it can be used to replay a scenario. similar to real-time simulation.
Below, the resulting timed trace for the scenario in Real-Time Simulation is shown
{ "activations": [ { "execute": "$initialise_machine", "after": "0", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": { "tl_cars": "red", "tl_peds": "red" }, "probabilisticVariables": null, "activating": [ "cars_ry_1" ], "id": "$initialise_machine" }, { "execute": "cars_ry", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "cars_g_2" ], "id": "cars_ry_1" }, { "execute": "cars_g", "after": "500", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "cars_y_3" ], "id": "cars_g_2" }, { "execute": "cars_y", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "cars_r_4" ], "id": "cars_y_3" }, { "execute": "cars_r", "after": "500", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "peds_g_5" ], "id": "cars_r_4" }, { "execute": "peds_g", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "peds_r_6" ], "id": "peds_g_5" }, { "execute": "peds_r", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": null, "id": "peds_r_6" } ], "metadata": { "fileType": "Timed_Trace", "formatVersion": 1, "savedAt": "2021-03-03T11:04:08.460477Z", "creator": "User", "proB2KernelVersion": "4.0.0-SNAPSHOT", "proBCliVersion": null, "modelName": null } }
It is also possible to apply Monte Carlo simulation to generate a certain number of simulations. Here, all simulations are played without real time. However, it is possible for the user, to replay the generated scenarios with real-time afterwards.
The input parameters are: