Summary of B Syntax: Difference between revisions

 
(63 intermediate revisions by 2 users not shown)
Line 4: Line 4:
== Summary of B Syntax ==
== Summary of B Syntax ==


Below we describe the "classical" B syntax as supported by ProB.
You may also wish to consult
* The B summary by Ken Robinson ([[File:B-summary.pdf|PDF File]])
* The [https://www.atelierb.eu Atelier-B] reference manual ([https://www.atelierb.eu/wp-content/uploads/2023/10/b-language-reference-manual.pdf b-language-reference-manual.pdf])


 
=== Logical predicates ===
=== Logical predicates: ===
<pre>
<pre>
  P & Q       conjunction
  P & Q       conjunction
  P or Q     disjunction
  P or Q       disjunction
  P => Q     implication
  P => Q       implication
  P <=> Q     equivalence
  P <=> Q     equivalence
  not P      negation
  not(P)       negation
  !(x).(P=>Q) universal quantification
  !(x).(P=>Q) universal quantification
  #(x).(P&Q) existential quantification
  #(x).(P&Q)   existential quantification
btrue        truth (this is a predicate)
bfalse      falsity (this is a predicate)
</pre>
</pre>


Line 20: Line 25:
Note: you can also introduce multiple variables inside a universal or existential quantification, e.g., <tt>!(x,y).(P => Q)</tt>.
Note: you can also introduce multiple variables inside a universal or existential quantification, e.g., <tt>!(x,y).(P => Q)</tt>.


=== Equality:===
=== Equality ===
<pre>
<pre>
  E = F     equality
  E = F   equality
  E /= F     disequality
  E /= F disequality
</pre>
</pre>


=== Booleans:===
=== Booleans ===
<pre>
<pre>
  TRUE
  TRUE     truth value (this is an expression)
  FALSE
  FALSE   falsity value (this is an expression)
  BOOL       set of boolean values ({TRUE,FALSE})
  BOOL     set of boolean values ({TRUE,FALSE})
  bool(P)     convert predicate into BOOL value
  bool(P) convert predicate into BOOL value
</pre>
</pre>


Warning: <tt>TRUE</tt> and <tt>FALSE</tt> are values and <em>not</em> predicates in B and cannot be combined using logical connectives.
Warning: <tt>TRUE</tt> and <tt>FALSE</tt> are expression values and <em>not</em> predicates in B and cannot be combined using logical connectives.
To combine two boolean values <tt>x</tt> and <tt>y</tt> using conjunction you have to write <tt>x=TRUE & y=TRUE</tt>.
To combine two boolean values <tt>x</tt> and <tt>y</tt> using conjunction you have to write <tt>x=TRUE & y=TRUE</tt>.
To convert a predicate such as <tt>z>0</tt> into a boolean value you have to use <tt>bool(z>0)</tt>.
To convert a predicate such as <tt>z>0</tt> into a boolean value you have to use <tt>bool(z>0)</tt>.


=== Sets:===
=== Sets ===
<pre>
<pre>
  {}         empty set
  {}             empty set
  {E}         singleton set
  {E}             singleton set
  {E,F}       set enumeration
  {E,F}           set enumeration
  {x|P}      comprehension set
  {x|P}          comprehension set
  POW(S)     power set
{(x).P|E}      Event-B style comprehension set (brackets needed)
  POW1(S)     set of non-empty subsets
  POW(S)         power set
  FIN(S)     set of all finite subsets
  POW1(S)         set of non-empty subsets
  FIN1(S)     set of all non-empty finite subsets
  FIN(S)         set of all finite subsets
  card(S)     cardinality
  FIN1(S)         set of all non-empty finite subsets
  S*T         cartesian product
  card(S)         cardinality
  S\/T       set union
  S*T             cartesian product
  S/\T       set intersection
  S\/T           set union
  S-T         set difference
  S/\T           set intersection
  E:S         element of
  S-T or S \ T    set difference
  E/:S       not element of
  E:S             element of
  S<:T       subset of
  E/:S           not element of
  S/<:T       not subset of
  S<:T           subset of
  S<<:T       strict subset of
  S/<:T           not subset of
  S/<<:T     not strict subset of
  S<<:T           strict subset of
  S/<<:T         not strict subset of
  union(S)        generalised union over sets of sets
  union(S)        generalised union over sets of sets
  inter(S)         generalised intersection over sets of sets
  inter(S)       generalised intersection over sets of sets
  UNION(z).(P|E)  generalised union with predicate
  UNION(z).(P|E)  generalised union with predicate
  INTER(z).(P|E)  generalised intersection with predicate
  INTER(z).(P|E)  generalised intersection with predicate
</pre>
</pre>


=== Numbers:===
=== Integers ===
<pre>
<pre>
  INTEGER     set of integers
  INTEGER         set of integers
  NATURAL     set of natural numbers
  NATURAL         set of natural numbers
  NATURAL1   set of non-zero natural numbers
  NATURAL1       set of non-zero natural numbers
  INT         set of implementable integers (MININT..MAXINT)
  INT             set of implementable integers (MININT..MAXINT)
  NAT         set of implementable natural numbers
  NAT             set of implementable natural numbers
  NAT1       set of non-zero implementable natural numbers
  NAT1           set of non-zero implementable natural numbers
  n..m       set of numbers from n to m
  n..m           set of numbers from n to m
  MININT     the minimum implementable integer
  MININT         the minimum implementable integer
  MAXINT     the maximum implementable integer
  MAXINT         the maximum implementable integer
  m>n         greater than
  m>n             greater than
  m<n         less than
  m<n             less than
  m>=n       greater than or equal
  m>=n           greater than or equal
  m<=n       less than or equal
  m<=n           less than or equal
  max(S)     maximum of a set of numbers
  max(S)         maximum of a set of numbers
  min(S)     minimum of a set of numbers
  min(S)         minimum of a set of numbers
  m+n         addition
  m+n             addition
  m-n         difference
  m-n             difference
  m*n         multiplication
  m*n             multiplication
  m/n         division
  m/n             division
  m**n       power
  m**n           power
  m mod n     remainder of division
  m mod n         remainder of division
  PI(z).(P|E)   Set product
  PI(z).(P|E)     set product
  SIGMA(z).(P|E) Set summation
  SIGMA(z).(P|E) set summation
  succ(n)     successor (n+1)
  succ(n)         successor (n+1)
  pred(n)     predecessor (n-1)
  pred(n)         predecessor (n-1)
  0xH         hexadecimal literal, where H is a sequence of letters in [0-9A-Fa-f]
  0xH             hexadecimal literal, where H is a sequence of letters in [0-9A-Fa-f]
</pre>
</pre>


=== Relations:===
=== Relations ===
<pre>
<pre>
  S<->T     relation
  S<->T         relation
  S<<->T   total relation
  S<<->T       total relation
  S<->>T   surjective relation
  S<->>T       surjective relation
  S<<->>T   total surjective relation
  S<<->>T       total surjective relation
  E|->F     maplet
  E|->F         maplet
  dom(r)   domain of relation
  dom(r)       domain of relation
  ran(r)   range of relation
  ran(r)       range of relation
  id(S)     identity relation
  id(S)         identity relation
  S<|r     domain restriction
  S<|r         domain restriction
  S<<|r     domain subtraction
  S<<|r         domain subtraction
  r|>S     range restriction
  r|>S         range restriction
  r|>>S     range subtraction
  r|>>S         range subtraction
  r~       inverse of relation
  r~           inverse of relation
  r[S]     relational image
  r[S]         relational image
  r1<+r2   relational overriding (r2 overrides r1)
  r1<+r2       relational overriding (r2 overrides r1)
  r1><r2   direct product {x,(y,z) | x,y:r1 & x,z:r2}
  r1><r2       direct product (all pairs (x,(y,z)) with x,y:r1 and x,z:r2)
  (r1;r2)     relational composition {x,y| x|->z:r1 & z|->y:r2}
  (r1;r2)       relational composition {x,y| x|->z:r1 & z|->y:r2}
  (r1||r2)   parallel product {((x,v),(y,w)) | x,y:r1 & v,w:r2}
  (r1||r2)     parallel product (all pairs ((x,v),(y,w)) with x,y:r1 and v,w:r2)
  prj1(S,T)    projection function (usage prj1(Dom,Ran)(Pair))
  prj1(S,T)    projection function (usage prj1(Dom,Ran)(Pair))
  prj2(S,T)    projection function (usage prj2(Dom,Ran)(Pair))
  prj2(S,T)    projection function (usage prj2(Dom,Ran)(Pair))
              prj1(Pair) and prj2(Pair) are also allowed
fnc(r)        translate relation A<->B into function A+->POW(B)
rel(r)        translate relation A<->POW(B) into relation A<->B
  closure1(r)  transitive closure
  closure1(r)  transitive closure
  closure(r)    reflexive & transitive closure
  closure(r)    reflexive & transitive closure
               (non-standard version: closure({}) = {}; see iterate(r,0) below)
               (equal to id(TYPEOF_r) \/ closure1(r))
  iterate(r,n)  iteration of r with n>=0  
  iterate(r,n)  iteration of r with n>=0
               (Note: iterate(r,0) = id(s) where s = dom(r)\/ran(r))
               (Note: iterate(r,0)=id(s) where s=TYPEOF_r)
fnc(r)   translate relation A<->B into function A+->POW(B)
rel(r)    translate relation A<->POW(B) into relation A<->B
</pre>
</pre>


=== Functions:===
=== Functions ===
<pre>
<pre>
  S+->T     partial function
S+->T         partial function
  S-->T     total function
S-->T         total function
  S+->>T     partial surjection
S+->>T       partial surjection
  S-->>T     total surjection
S-->>T       total surjection
  S>+>T     partial injection
S>+>T         partial injection
  S>->T     total injection
S>->T         total injection
  S>+>>T     partial bijection
S>+>>T       partial bijection
  S>->>T     total bijection
S>->>T       total bijection
  %x.(P|E)   lambda abstraction
%x.(P|E)     lambda abstraction
  f(E)       function application
f(E)         function application
  f(E1,...,En)   is now supported (as well as f(E1|->E2))
f(E1,...,En) is also supported (as well as f(E1|->E2...|->En))
</pre>
</pre>


=== Sequences:===
=== Sequences ===
<pre>
<pre>
  <> or []  empty sequence
[] or <> empty sequence
  [E]       singleton sequence
[E]       singleton sequence
  [E,F]     constructed sequence
[E,F]     constructed sequence
  seq(S)     set of sequences over Sequence
seq(S)   set of sequences over S
  seq1(S)   set of non-empty sequences over S
seq1(S)   set of non-empty sequences over S
  iseq(S)   set of injective sequences
iseq(S)   set of injective sequences over S
  iseq1(S)   set of non-empty injective sequences
iseq1(S) set of non-empty injective sequences over S
  perm(S)   set of bijective sequences (permutations)
perm(S)   set of bijective sequences (permutations) over S
  size(s)   size of sequence
size(s)   size of sequence
  s^t       concatenation
s^t       concatenation
  E->s       prepend element
E->s     prepend element
  s<-E       append element
s<-E     append element
  rev(s)     reverse of sequence
rev(s)   reverse of sequence
  first(s)   first element
first(s) first element
  last(s)   last element
last(s)   last element
  front(s)   front of sequence (all but last element)
front(s) front of sequence (all but last element)
  tail(s)   tail of sequence (all but first element)
tail(s)   tail of sequence (all but first element)
  conc(S)   concatenation of sequence of sequences
conc(S)   concatenation of sequence of sequences
  s/|\n    take first n elements of sequence
s/|\n    take first n elements of sequence
  s\|/n    drop first n elements from sequence
s\|/n    drop first n elements from sequence
  </pre>
  </pre>


=== Records:===
=== Records ===
<pre>
<pre>
  struct(ID:S,...,ID:S)   set of records with given fields and field types
struct(ID:S,...,ID:S) set of records with given fields and field types
  rec(ID:E,...,ID:E)     construct a record with given field names and values
rec(ID:E,...,ID:E)     construct a record with given field names and values
  E'ID                   get value of field with name ID
E'ID                   get value of field with name ID
</pre>
</pre>


=== Strings:===
=== Identifiers ===
<pre>
<pre>
  "astring"     a specific (single-line) string value
ID    must start with letter (ASCII or Unicode), can then contain
  '''astring''' an alternate way of writing (multi-line) strings, no need to escape "
      letters (ASCII or Unicode), digits and underscore (_) and
  ```tstring``` template strings, where ${Expr} parts are evaluated and converted to string
      can end with Unicode subscripts followed by Unicode primes
  STRING        the set of all strings
M.ID  composed identifier for identifier coming from included machine M
                 Note: for the moment enumeration of strings is limited (if a variable
`ID`  an identifier in backquotes can contain almost any character (except newline)
                 of type STRING is not given a value by the machine, then ProB assumes
</pre>
                STRING = { "STR1", "STR2" })
 
=== Strings ===
<pre>
"astring"     a specific (single-line) string value
'''astring''' an alternate way of writing (multi-line) strings, no need to escape "
```tstring``` template strings, where ${Expr} parts are evaluated and converted to string,
                you can provide options separated by commas in square brackets like $[2f]{Expr}.
                 Valid options are: Nf (for floats/reals), Nd (for integer), Np (padding),
                 ascii (can be abbreviated to a), unicode (can be abbreviated to u).
STRING         the set of all strings
</pre>
</pre>


Atelier-B does not support any operations on strings, apart from equality and disequality.
Atelier-B does not support any operations on strings, apart from equality and disequality.
However, the ProB [[External_Functions|external function library]] contains several operators on strings. ProB also allows multi-line strings.
In ProB, however, some of the sequence operators work also on strings:
<pre>
size(s)  the length of a string s
rev(s)    the reverse of a string s
s ^ t    the concatenation of two strings
conc(ss)  the concatenation of a sequence of strings
</pre>
You can turn this support off using the <tt>STRING_AS_SEQUENCE</tt> preference.
The [[External_Functions|library]] LibraryStrings.def in stdlib contains additional useful external functions
(like <tt>TO_STRING</tt>, <tt>STRING_SPLIT</tt>, <tt>FORMAT_TO_STRING</tt>, <tt>INT_TO_HEX_STRING</tt>, ...).
 
ProB also allows multi-line strings.
 
As of version 1.7.0, ProB will support the following escape sequences within strings:
As of version 1.7.0, ProB will support the following escape sequences within strings:
  \n   newline (ASCII character 13)
<pre>
  \r   carriage return (ASCII 10)
  \n newline (ASCII character 13)
  \r carriage return (ASCII 10)
  \t  tab (ASCII 9)
  \t  tab (ASCII 9)
  \"   the double quote symbol "
  \" the double quote symbol "
  \'   the single quote symbol '
  \' the single quote symbol '
  \\   the backslash symbol
  \\ the backslash symbol
</pre>
Within single-line string literals, you do not need to escape <tt>'</tt>.
Within multi-line string literals, you do not need to escape <tt>"</tt> and you can use
tabs and newlines.


Within single-line string literals, you do not need to escape '.
Within multi-line string literals, you do not need to escape " and you can use
tabs and newlines.
ProB assumes that all B machines and strings use the UTF-8 encoding.
ProB assumes that all B machines and strings use the UTF-8 encoding.


The library LibraryStrings.def in stdlib contains additional useful external functions
=== Reals ===  
(like TO_STRING, STRING_SPLIT, FORMAT_TO_STRING, INT_TO_HEX_STRING, ...).
Some of the sequence operators work also on strings:
<pre>
  size(s)    the length of a string s
  rev(s)      the reverse a string s
  s ^ t      the concatenation of two strings
  conc(ss)    the concatenation of a sequence of strings
</pre>
You can turn this support off using the STRING_AS_SEQUENCE preference.
 
=== Reals: ===  
   
   
<pre>
<pre>
  REAL        set of reals
  REAL        set of reals
  FLOAT      set of floating point numbers
  FLOAT      set of floating point numbers
  i.f        real literal, where i and f are sequences of digits
  i.f        real literal in decimal notation, where i and f are natural numbers
i.fEg      real literal in scientific notation, where i,f are natural numbers and g is an integer
  real(n)    convert an integer n into a real number
  real(n)    convert an integer n into a real number
  floor(r)    convert a real r to an integer
  floor(r)    convert a real r into an integer
  ceiling(r)  convert a real r to an integer
  ceiling(r)  convert a real r into an integer
</pre>
</pre>
 
One can also use a lowercase <tt>e</tt> for literals in scientific notation (e.g. <tt>1.0e-10</tt>).
Standard arithmetic operators can be applied to reals: +, - , *, /, SIGMA, PI.
Standard arithmetic operators can be applied to reals: +, - , *, /, SIGMA, PI.
Exponentiation of a real with an integer is also allowed.
Exponentiation of a real with an integer is also allowed.
Line 226: Line 247:
is also not stable yet. Currently ProB supports floating point numbers only.
is also not stable yet. Currently ProB supports floating point numbers only.
Warning: properties such as associativity and commutativity of arithmetic operators
Warning: properties such as associativity and commutativity of arithmetic operators
thus does not hold.
thus do not hold.
The library LibraryReals.def in stdlib contains additional useful external functions
The [[External_Functions|library]] LibraryReals.def in stdlib contains additional useful external functions
(like RSIN, RCOS, RLOG, RSQRT, RPOW, ...).
(like <tt>RSIN</tt>, <tt>RCOS</tt>, <tt>RLOG</tt>, <tt>RSQRT</tt>, <tt>RPOW</tt>, ...).
You can turn off support for REALS using the preference ALLOW_REALS.
You can turn off support for REALS using the preference <tt>ALLOW_REALS</tt>.
The <tt>REAL_SOLVER</tt> preference how constraints are solved.


=== Trees:===
=== Trees ===
Nodes in the tree are denoted by index sequences (branches), e.g, n=[1,2,1]
Nodes in the tree are denoted by index sequences (branches), e.g, <tt>n=[1,2,1]</tt>
Each node in the tree is labelled with an element from a domain S
Each node in the tree is labelled with an element from a domain S.
A tree is a function mapping of branches to elements of the domain S.
A tree is a function mapping of branches to elements of the domain S.
<pre>
<pre>
  tree(S)     set of trees over domain S
tree(S)       set of trees over domain S
  btree(S)     set of binary trees over domain S
btree(S)     set of binary trees over domain S
  top(t)       top of a tree
top(t)       top of a tree
  const(E,s)   construct a tree from info E and sequence of subtrees s
const(E,s)   construct a tree from info E and sequence of subtrees s
  rank(t,n)   rank of the node at end of branch n in the tree t
rank(t,n)     rank of the node at end of branch n in the tree t
  father(t,n) father of the node denoted by branch n in the tree t
father(t,n)   father of the node denoted by branch n in the tree t
  son(t,n,i)   the ith son of the node denoted by branch n in tree t
son(t,n,i)   the ith son of the node denoted by branch n in tree t
  sons(t)     the sequence of sons of the root of the tree t
sons(t)       the sequence of sons of the root of the tree t
  subtree(t,n)
subtree(t,n)
  arity(t,n)
arity(t,n)
  bin(E)       construct a binary tree with a single node E
bin(E)       construct a binary tree with a single node E
  bin(tl,E,tr) construct a binary tree with root info E and subtrees tl,tr
bin(tl,E,tr) construct a binary tree with root info E and subtrees tl,tr
  left(t)     the left (first) son of the root of the binary tree t
left(t)       the left (first) son of the root of the binary tree t
  right(t)     the right (last) son of the root of the binary tree t
right(t)     the right (last) son of the root of the binary tree t
  sizet(t)     the size of the tree (number of nodes)
sizet(t)     the size of the tree (number of nodes)
  prefix(t)   the nodes of the tree t in prefix order
prefix(t)     the nodes of the tree t in prefix order
  postfix(t)    the nodes of the tree t in prefix order
postfix(t)    the nodes of the tree t in prefix order
  mirror, infix are recognised by the parser but not yet supported by ProB itself
mirror, infix are recognised by the parser but not yet supported by ProB itself
</pre>
</pre>


=== LET and IF-THEN-ELSE ===  
=== LET and IF-THEN-ELSE ===  
ProB allows the following for predicates and expressions:
ProB allows the following for predicates, expressions and substitutions:
<pre>
<pre>
  IF P1 THEN E1 ELSE E2 END
IF P THEN E1 END                   conditional branching
  IF P1 THEN E1 ELSIF P2 THEN E2 ... ELSE En END    conditional for expressions or predicates E1,E2,...,En
IF P THEN E1 ELSIF E2 END          we also allow multiple ELSIF branches
  LET x1,... BE x1=E1 & ... IN E END
IF P THEN E1 ELSE E2 END            but you always need an ELSE branch for expressions and predicates
IF P THEN E1 ELSIF E2 ELSE E3 END
LET x1,... BE x1=E1 & ... IN E END introduce local variables
</pre>
</pre>
Note: the expressions E1,... defining x1,... are not allowed to use x1,...
Note: the expression <tt>Ei</tt> defining <tt>xi</tt> is allowed to use <tt>x1,...,x(i-1)</tt> for predicates/expressions.
By setting the preference <tt>ALLOW_COMPLEX_LETS</tt> to <tt>TRUE</tt>, this is also allowed for substitutions.


=== Statements (aka Substitutions):===
=== Statements (aka Substitutions) ===
<pre>
<pre>
  skip         no operation
skip                                                     no operation
  x := E       assignment
x := E                                                   assignment
  f(x) := E   functional override
f(x) := E                                                 functional override
  x :: S       choice from set
x :: S                                                   choice from set
  x : (P)     choice by predicate P (constraining x)
x : (P)                                                   choice by predicate P (constraining x; previous value of x is x$0)
  x <-- OP(x) call operation and assign return value
x <-- OP(x)                                               call operation and assign return value
  G||H         parallel substitution**
G||H                                                     parallel substitution**
  G;H         sequential composition**
G;H                                                       sequential composition**
  ANY x,... WHERE P THEN G END   non deterministic choice
ANY x,... WHERE P THEN G END                             non deterministic choice
  LET x,... BE x=E & ... IN G END
LET x,... BE x=E & ... IN G END
  VAR x,... IN G END             generate local variables
VAR x,... IN G END                                       generate local variables
  PRE P THEN G END
PRE P THEN G END
  ASSERT P THEN G END
ASSERT P THEN G END
  CHOICE G OR H END
CHOICE G OR H END
  IF P THEN G END
IF P THEN G END
  IF P THEN G ELSE H END
IF P THEN G ELSE H END
  IF P1 THEN G1 ELSIF P2 THEN G2 ... END
IF P1 THEN G1 ELSIF P2 THEN G2 ... END
  IF P1 THEN G1 ELSIF P2 THEN G2 ... ELSE Gn END
IF P1 THEN G1 ELSIF P2 THEN G2 ... ELSE Gn END
  SELECT P THEN G WHEN ... WHEN Q THEN H END
SELECT P THEN G WHEN ... WHEN Q THEN H END
  SELECT P THEN G WHEN ... WHEN Q THEN H ELSE I END
SELECT P THEN G WHEN ... WHEN Q THEN H ELSE I END
  CASE E OF EITHER m THEN G OR n THEN H ... END END
CASE E OF EITHER m THEN G OR n THEN H ... END END
  CASE E OF EITHER m THEN G OR n THEN H ... ELSE I END END
CASE E OF EITHER m THEN G OR n THEN H ... ELSE I END END
 
WHILE P1 DO G INVARIANT P2 VARIANT E END
  WHEN P THEN G END is a synonym for SELECT P THEN G END
WHEN P THEN G END                                         is a synonym for SELECT P THEN G END
 
**: cannot be used at the top-level of an operation, but needs to
  be wrapped inside a BEGIN END or another statement (to avoid
  problems with the operators ; and ||).
</pre>
</pre>
&ast;&ast;: cannot be used at the top-level of an operation, but needs to
be wrapped inside a <tt>BEGIN END</tt> or another statement (to avoid
confusion with the operators <tt>;</tt> and <tt>||</tt> on relations).


=== Machine header:===
=== Machine header ===
<pre>
<pre>
  MACHINE or REFINEMENT or IMPLEMENTATION
MACHINE or REFINEMENT or IMPLEMENTATION
 
  Note: machine parameters can either be SETS (if identifier is all upper-case)
        or scalars (i.e., integer, boolean or SET element; if identifier is not
        all upper-case; typing must be provided be CONSTRAINTS)
  You can also use MODEL or SYSTEM as a synonym for MACHINE, as well
  as EVENTS as a synonym for OPERATIONS.
  ProB also supports the ref keyword of Atelier-B for event refinement.
</pre>
</pre>
Note: machine parameters can either be SETS (if identifier is all upper-case)
or scalars (i.e., integer, boolean or SET element; if identifier is not
all upper-case; typing must be provided be CONSTRAINTS)
You can also use MODEL or SYSTEM as a synonym for MACHINE, as well
as EVENTS as a synonym for OPERATIONS.
ProB also supports the ref keyword of Atelier-B for event refinement.


=== Machine sections:===
=== Machine sections ===
<pre>
<pre>
  CONSTRAINTS        P     (logical predicate)
CONSTRAINTS        P                     (logical predicate)
  SETS                S;T={e1,e2,...};...
SETS                S;T={e1,e2,...};...
  CONSTANTS          x,y,...
FREETYPES          x=x1,x2(arg2),...;...
  CONCRETE_CONSTANTS cx,cy,...
CONSTANTS          x,y,...
  PROPERTIES         P       (logical predicate)
CONCRETE_CONSTANTS cx,cy,...
  DEFINITIONS       m(x,...) == BODY;....
PROPERTIES         P                     (logical predicate)
  VARIABLES         x,y,...   
DEFINITIONS         m(x,...) == BODY;...
  CONCRETE_VARIABLES cv,cw,...
VARIABLES           x,y,...
  INVARIANT         P       (logical predicate)
  CONCRETE_VARIABLES cv,cw,...
  ASSERTIONS         P;...;P (list of logical predicates separated by ;)
INVARIANT           P                     (logical predicate)
  INITIALISATION
ASSERTIONS         P;...;P               (list of logical predicates separated by ;)
  OPERATIONS
INITIALISATION     S                    (substitution)
OPERATIONS         O;...                (operations)
</pre>
</pre>


=== Machine inclusion:===
=== Machine inclusion ===
<pre>
<pre>
  USES list of machines
USES     list of machines
  INCLUDES list of machines
INCLUDES list of machines
  SEES list of machines
SEES     list of machines
   EXTENDS list of machines
EXTENDS   list of machines
  PROMOTES list of operations
PROMOTES list of operations
   REFINES machine
REFINES   machine
</pre>
</pre>
   
   
Note: Refinement machines should express the operation preconditions in terms of their own variables.
Note: Refinement machines should express the operation preconditions in terms of their own variables.


=== Definitions:===
=== Definitions ===
<pre>
<pre>
  NAME1 == Expression;         Definition without arguments
NAME1 == Expression;     Definition without arguments
  NAME2(ID,...,ID) == E2;       Definition with arguments
NAME2(ID,...,ID) == E2; Definition with arguments
"FILE.def";              Include definitions from file
</pre>
</pre>
  "FILE.def";                  Include definitions from file


There are a few Definitions which can be used to influence the animator:
There are a few specific definitions which can be used to influence ProB:
<pre>
GOAL == P                          to define a custom Goal predicate for Model Checking
                                    (the Goal is also set by using "Advanced Find...")
SCOPE == P                        to limit the search space to "interesting" nodes
scope_SETNAME == n..n              to define custom cardinality for set SETNAME
scope_SETNAME == n                equivalent to 1..n
SET_PREF_MININT == n
SET_PREF_MAXINT == n
SET_PREF_MAX_INITIALISATIONS == n  max. number of intialisations computed
SET_PREF_MAX_OPERATIONS == n      max. number of enablings per operation computed
MAX_OPERATIONS_OPNAME == n        max. number of enablings for the operation OPNAME
SET_PREF_SYMBOLIC == TRUE/FALSE
SET_PREF_TIME_OUT == n            time out for operation computation in ms
ASSERT_LTL... == "LTL Formula"  using X,F,G,U,R LTL operators +
                                    Y,O,H,S Past-LTL operators +
                                    atomic propositions: e(OpName), [OpName], {BPredicate}
HEURISTIC_FUNCTION == n            in directed model-checking mode nodes with smalles value will be processed first
</pre>


The following definitions allow providing a custom state visualization (n can be empty or a number):
<pre>
<pre>
There are a few specific definitions which can be used to influence ProB:
ANIMATION_FUNCTIONn == e                          a function (INT*INT) +-> INT or an INT
  GOAL == P                to define a custom Goal predicate for Model Checking
ANIMATION_FUNCTION_DEFAULT == e                    a function (INT*INT) +-> INT or an INT
                        (the Goal is also set by using "Advanced Find...")
                                                    instead of any INT above you can also use BOOL or any SET
  SCOPE == P              to limit the search space to "interesting" nodes
                                                    as a result you can also use STRING values,
  scope_SETNAME == n..n    to define custom cardinality for set SETNAME
                                                    or even other values which are pretty printed
  scope_SETNAME == n      equivalent to 1..n
ANIMATION_IMGn == "PATH to .gif"                  a path to a gif file
  SET_PREF_MININT == n
ANIMATION_STRn == "sometext"                      a string without spaces;
  SET_PREF_MAXINT == n
                                                    the result integer n will be rendered as a string
  SET_PREF_MAX_INITIALISATIONS == n max. number of intialisations computed
  ANIMATION_STR_JUSTIFY_LEFT == TRUE                computes the longest string in the outputs and pads
  SET_PREF_MAX_OPERATIONS == n      max. number of enablings per operation computed
                                                    the other strings accordingly
  SET_PREF_SYMBOLIC == TRUE/FALSE
SET_PREF_TK_CUSTOM_STATE_VIEW_PADDING == n         additional padding between images in pixels
  SET_PREF_TIME_OUT == n             time out for operation computation in ms
SET_PREF_TK_CUSTOM_STATE_VIEW_STRING_PADDING == n  additional padding between text in pixels
  ASSERT_LTL... == "LTL Formula"  using X,F,G,U,R LTL operators +
                                  Y,O,H,S Past-LTL operators +
                                  atomic propositions: e(OpName), [OpName], {BPredicate}
</pre>
</pre>


The following definitions allow providing a custom state visualization:
The following definitions allow providing a [[Custom Graph|custom state graph]] (n can be empty or a number):
 
<pre>
CUSTOM_GRAPH_NODESn == e  define a set of nodes to be shown,
                          nodes can also be pairs (Node,Colour), triples (Node,Shape,Colour) or
                          records or sets of records like
                          rec(color:Colour, shape:Shape, style:Style, label:Label, value:Node, ...)
                          Colours are strings of valid Dot/Tk colors (e.g., "maroon" or "red")
                          Shapes are strings of valid Dot shapes (e.g., "rect" or "hexagon"), and
                          Styles are valid Dot shape styles (e.g., "rounded" or "solid" or "dashed")
CUSTOM_GRAPH_EDGESn == e  define a relation to be shown as a graph
                          edges can either be pairs (node1,node2) or triples (node1,Label,node2)
                          where Label is either a Dot/Tk color or a string or value representing
                          the label to be used for the edges
</pre>
In both cases e can also be a record which defines default dot attributes like
color, shape, style and description, e.g.:
<pre>
<pre>
  ANIMATION_FUNCTIONn == e           a function (INT*INT) +-> INT or an INT
CUSTOM_GRAPH_NODES == rec(color:"blue", shape:"rect", style:"filled", nodes:e);
  ANIMATION_FUNCTION_DEFAULT == e    a function (INT*INT) +-> INT or an INT
CUSTOM_GRAPH_EDGES == rec(color:"red", style:"dotted", dir:"none", penwidth:2, edges:e)
                    instead of any INT above you can also use BOOL or any SET
                    as a result you can also use STRING values,
                    or even other values which are pretty printed
  ANIMATION_IMGn == "PATH to .gif"   a path to a gif file
  ANIMATION_STRn == "sometext"       a string without spaces;
                                    the result integer n will be rendered as a string
  ANIMATION_STR_JUSTIFY_LEFT == TRUE computes the longest string in the outputs and pads
                                    the other strings accordingly
  SET_PREF_TK_CUSTOM_STATE_VIEW_PADDING == n          additional padding between images in pixels
  SET_PREF_TK_CUSTOM_STATE_VIEW_STRING_PADDING == n  additional padding between text in pixels
</pre>
</pre>


The following definitions allow providing a [[Custom Graph|custom state graph]]:
Alternatively, the complete graph can be put into one definition using [[Custom_Graph|<code>CUSTOM_GRAPH</code>]].
You have to define a single CUSTOM_GRAPH definition of a record with global graph attributes
  (like rankdir or layout) and optionally with edges and nodes attributes (replacing
    CUSTOM_GRAPH_EDGES and CUSTOM_GRAPH_NODES respectively), e.g.:
<pre>
<pre>
  CUSTOM_GRAPH_NODESn == e    define a set of nodes to be shown,
    CUSTOM_GRAPH == rec(layout:"circo", nodes:mynodes, edges:myedges)
                              nodes can also be pairs (Node,Colour), triples (Node,Shape,Colour) or
                              records rec(color:Colour, shape:Shape, style:Style, label:Label, value:Node)
                              Colours are strings of valid Dot/Tk colors (e.g., "maroon" or "red")
                              Shapes are strings of valid Dot shapes (e.g., "rect" or "hexagon"), and
                              Styles are valid Dot shape styles (e.g., "rounded" or "solid" or "dashed")
  CUSTOM_GRAPH_EDGESn == e    define a relation to be shown as a graph
                              edges can either be pairs (node1,node2) or triples (node1,Label,node2)
                              where Label is either a Dot/Tk color or a string or value representing
                              the label to be used for the edges
</pre>
</pre>
In both cases e can also be a record which defines default dot attributes like color, shape, style and description, e.g.:
 
You can now also use a single CUSTOM_GRAPH definition of a record with global graph attributes
(like rankdir or layout) and optionally with edges and nodes attributes
(replacing CUSTOM_GRAPH_EDGES and CUSTOM_GRAPH_NODES respectively), e.g.:
<pre>
<pre>
  CUSTOM_GRAPH_NODES == rec(color:"blue", shape:"rect", nodes:e);
CUSTOM_GRAPH == rec(layout:"circo", nodes:mynodes, edges:myedges)
  CUSTOM_GRAPH_EDGES == rec(color:"red", style:"dotted", edges:e)
</pre>
</pre>
Alternatively, the complete graph can be put into one definition using [[Custom Graph|<code>CUSTOM_GRAPH</code>]].


There are also definitions for [[Generating UML Sequence Charts|generating UML sequence charts]].
You can also provide <tt>SEQUENCE_CHART_opname</tt> definitions for [[Generating UML Sequence Charts|generating UML sequence charts]].


These DEFINITIONS affect [[VisB|VisB]]:
These DEFINITIONS affect [[VisB|VisB]]:
<pre>
<pre>
  VISB_JSON_FILE == "PATH to .json"  a path to a default VisB JSON file for visualisation;  
VISB_JSON_FILE == "PATH to .json"  a path to a default VisB JSON file for visualisation;
                                    if it is "" an empty SVG will be created
                                    if it is "" an empty SVG will be created
  VISB_SVG_OBJECTSn == define a record or set of records for creating new SVG objects
VISB_SVG_OBJECTSn == ...          define a record or set of records for creating new SVG objects
  VISB_SVG_UPDATESn == define a record or set of records containing updates of SVG objects
VISB_SVG_UPDATESn == ...          define a record or set of records containing updates of SVG objects
  VISB_SVG_HOVERSn == define a record or set of records for VisB hover functions
VISB_SVG_HOVERSn == ...            define a record or set of records for VisB hover functions
  VISB_SVG_BOX == record with dimensions (height, width) of a default empty SVG
VISB_SVG_BOX == ...                record with dimensions (height, width) of a default empty SVG
  VISB_SVG_CONTENTS == defines a string to be included into a created empty SVG file
VISB_SVG_CONTENTS == ...          defines a string to be included into a created empty SVG file
</pre>
</pre>


Line 417: Line 457:
<pre>
<pre>
B supports two styles of comments:
B supports two styles of comments:
  /* ... */       block comments
/* ... */ block comments
  // ...         line comments
// ...     line comments
</pre>
</pre>


Line 424: Line 464:
The whitespace between @ and PRAGMA is optional.
The whitespace between @ and PRAGMA is optional.
<pre>
<pre>
  /*@symbolic */     put before comprehension set or lambda to instruct ProB
/*@symbolic */             put before comprehension set, lambda, union or composition to instruct ProB
                      to keep it symbolic and not try to compute it explicitly
                            to keep it symbolic and not try to compute it explicitly
  /*@label LBL */     associates a label LBL with the following predicate
/*@label LBL */           associates a label LBL with the following predicate
                      (LBL must be identifier or a string "....")
                            (LBL must be identifier or a string "....")
  /*@desc DESC */     associates a description DESC with the preceding predicate or
/*@desc DESC */           associates a description DESC with the preceding predicate or
                      introduced identifier (in VARIABLES, CONSTANTS,... section)
                            introduced identifier (in VARIABLES, CONSTANTS,... section)
                      There are two special descriptions
                            There are three special descriptions:
                      /*@desc memo*/ to be put after identifiers in the ABSTRACT_CONSTANTS section
                            /*@desc memo*/         to be put after identifiers in the ABSTRACT_CONSTANTS section
                                    indicating that these functions should be memoized
                                                    indicating that these functions should be memoized
                      /*@desc prob-ignore */ to be put after predicates (e.g., in PROPERTIES) which
                            /*@desc expand*/        to be put after identifiers (in VARIABLES, CONSTANTS,... section)
                                            should be ignored by ProB
                                                    indicating that they should be expanded and not kept symbolically
                                            when the preference USE_IGNORE_PRAGMAS is TRUE
                            /*@desc prob-ignore */ to be put after predicates (e.g., in PROPERTIES) which
  /*@file PATH */     associates a file for machines in SEES, INCLUDES, ...
                                                    should be ignored by ProB
                      put pragma after a seen or included machine
                                                    when the preference USE_IGNORE_PRAGMAS is TRUE
  /*@package NAME */ at start of machine, machine file should be in folder NAME/...
/*@file PATH */           associates a file for machines in SEES, INCLUDES, ...
                      NAME can be qualified N1.N2...Nk, in which case the machine
                            put pragma after a seen or included machine
                      file should be in N1/N2/.../Nk
/*@package NAME */         at start of machine, machine file should be in folder NAME/...
  /*@import-package NAME */  adds ../NAME to search paths for SEES,...
                            NAME can be qualified N1.N2...Nk, in which case the machine
                      NAME can also be qualified N1.N2...Nk, use after package pragma
                            file should be in N1/N2/.../Nk
  /*@generated */     can be put at the top of a machine file; indicates the machine
/*@import-package NAME */  adds ../NAME to search paths for SEES,...
                      is generated from some other source and should not be edited
                            NAME can also be qualified N1.N2...Nk, use after package pragma
/*@generated */           can be put at the top of a machine file; indicates the machine
                            is generated from some other source
</pre>
</pre>


=== File Extensions ===
=== File Extensions ===
<pre>
<pre>
  .mch  for abstract machine files
.mch  for abstract machine files
  .ref  for refinement machines
.ref  for refinement machines
  .imp  for implementation machines
.imp  for implementation machines
  .def  for DEFINITIONS files
.def  for DEFINITIONS files
  .rmch  for Rules machines for data validation
.rmch  for Rules machines for data validation
</pre>
</pre>


=== Freetypes ===  
=== Free Types ===  
Freetypes exist in Z and in the Rodin theory plugin and are supported by ProB.
More information can be found [[Free Types|here]].
You can also define new freetypes in classical B by adding a FREETYPES clause
 
with equations separated by semicolon.
Free types exist in Z and in the Rodin theory plugin and are supported by ProB.
Here is a definition of an inductive type IntList for lists of
You can also define new free types in classical B by adding a ''FREETYPES'' clause with free type definitions separated by semicolon.
integers constructed using inil and icons:
 
Here is a definition of an inductive type ''IntList'' for lists of integers constructed using ''inil'' and ''icons'':
<pre>
<pre>
FREETYPES
FREETYPES
Line 467: Line 510:
</pre>
</pre>


=== Differences with AtelierB/B4Free===
=== Differences with AtelierB/B4Free ===
Basically, ProB tries to be compatible with Atelier B and conforms to the semantics
Basically, ProB tries to be compatible with Atelier B and conforms to the semantics
of Abrial's B-Book and of [http://www.atelierb.eu/php/documents-en.php#manuel-reference Atelier B's reference manual].
of Abrial's B-Book and of [http://www.atelierb.eu/php/documents-en.php#manuel-reference Atelier B's reference manual].
Here are the main differences with Atelier B:
Here are the main differences with Atelier B:
<pre>
<pre>
  - tuples without parentheses are not supported; write (a,b,c) instead of a,b,c
- tuples without parentheses are not supported; write (a,b,c) instead of a,b,c
  - relational composition has to be wrapped into parentheses; write (f;g)
- relational composition has to be wrapped into parentheses; write (f;g)
  - parallel product also has to be wrapped into parentheses; write (f||g)
- parallel product also has to be wrapped into parentheses; write (f||g)
  - not all tree operators are supported
- not all tree operators are supported
  - the VALUES clause is only partially supported
- the VALUES clause is only partially supported
  - definitions have to be syntactically correct and be either an expression,
- definitions have to be syntactically correct and be either an expression,
    predicate or substitution;
  predicate or substitution;
    the arguments to definitions have to be expressions;
  the arguments to definitions have to be expressions;
    definitions which are predicates or substitutions must be declared before first use
  definitions which are predicates or substitutions must be declared before first use
  - definitions are local to a machine
- definitions are local to a machine
  - for ProB the order of fields in a record is not relevant (internally the fields are
- for ProB the order of fields in a record is not relevant (internally the fields are
    sorted), Atelier-B reports a type error if the order of the name of the fields changes
  sorted), Atelier-B reports a type error if the order of the name of the fields changes
  - well-definedness: for disjunctions and implications ProB uses the L-system
- well-definedness: for disjunctions and implications ProB uses the L-system
    of well-definedness (i.e., for P => Q, P should be well-defined and
  of well-definedness (i.e., for P => Q, P should be well-defined and
    if P is true then Q should also be well-defined)
  if P is true then Q should also be well-defined)
  - ProB allows WHILE loops and sequential composition in abstract machines
- ProB allows WHILE loops and sequential composition in abstract machines
  - ProB now allows the IF-THEN-ELSE and LET for expressions and predicates
- ProB now allows the IF-THEN-ELSE and LET for expressions and predicates
    (e.g., IF x<0 THEN -x ELSE x END or LET x BE x=f(y) IN x+x END)
  (e.g., IF x<0 THEN -x ELSE x END or LET x BE x=f(y) IN x+x END)
  - ProB's type inference is stronger than Atelier-B's, much less typing predicates
- ProB's type inference is stronger than Atelier-B's, much less typing predicates
    are required
  are required
  - ProB accepts operations with parameters but without pre-conditions
- You can apply prj1 and prj2 without providing the type arguments, e.g., prj2(prj1(1|->2|->3))
  - ProB allows identifiers consisting of a single character and identifiers in single backquotes (`id`)
- ProB accepts operations with parameters but without pre-conditions
  - ProB allows to use <> for the empty sequence (but this use is deprecated)
- ProB allows identifiers consisting of a single character and identifiers in single backquotes (`id`)
  - ProB allows escape codes (\n, \', \", see above) and supports UTF-8 characters in strings,
- ProB allows to use <> for the empty sequence (but this use is deprecated)
    and ProB allows multi-line string literals written using three apostrophes ('''string''')
- ProB allows escape codes (\n, \', \", see above) and supports UTF-8 characters in strings,
    as well as template strings using three backquotes (e.g., ```1+2=${1+2}```)
  and ProB allows multi-line string literals written using three apostrophes ('''string''')
  - ProB allows a she-bang line in machine files starting with #!
  as well as template strings using three backquotes (e.g., ```1+2=${1+2}```)
  (If you discover more differences, please let us know!)
- ProB allows a she-bang line in machine files starting with #!
  - ProB allows btrue and bfalse as predicates in B machines
  - ProB allows btrue and bfalse as predicates in B machines
  - ProB allows to use the Event-B relation operators <<->, <->>, <<->>
- ProB allows to use the Event-B relation operators <<->, <->>, <<->>
  - ProB allows set comprehensions with an extra expression like {x•x:1..10|x*x}.
- ProB allows set comprehensions with an extra expression like {x•x:1..10|x*x}.
  - The FREETYPES section and the external libraries (LibraryStrings.def, ...) do not exist in Atelier-B
- The FREETYPES section and the external libraries (LibraryStrings.def, ...) do not exist in Atelier-B
</pre>
</pre>


Line 513: Line 556:
<pre>
<pre>
  - AtelierB/ProB do not allow true as predicate;
  - AtelierB/ProB do not allow true as predicate;
   e.g., PRE true THEN ... END is not allowed (use BEGIN ... END instead), ProB allows btrue as predicate.
   e.g., PRE true THEN ... END is not allowed (use BEGIN ... END instead)
  ProB now allows btrue and bfalse to be used as predicates.
  - AtelierB/ProB do not allow a machine parameter to be used in the PROPERTIES
  - AtelierB/ProB do not allow a machine parameter to be used in the PROPERTIES
  - AtelierB/ProB require a scalar machine parameter to be typed in the
  - AtelierB/ProB require a scalar machine parameter to be typed in the
Line 520: Line 564:
</pre>
</pre>


=== Other notes===
If you discover more differences, please let us know!
 
=== Other notes ===
<pre>
<pre>
ProB now supports the Unicode mathematical symbols, exactly like Atelier-B
  ProB is best at treating universally quantified formulas of the form
  ProB is best at treating universally quantified formulas of the form
!x.(x:SET => RHS), or
  !x.(x:SET => RHS), or
!(x,y).(x|->y:SET =>RHS), !(x,y,z).(x|->y|->z:SET =>RHS), ...;
  !(x,y).(x|->y:SET =>RHS),  
  !(x,y,z).(x|->y|->z:SET =>RHS), ...;
  otherwise the treatment of !(x1,...,xn).(LHS => RHS) may delay until all values
  otherwise the treatment of !(x1,...,xn).(LHS => RHS) may delay until all values
  treated by LHS are known.
  treated by LHS are known.
Line 531: Line 579:
  The construction S:FIN(S) is recognised by ProB as equivalent to the Event-B
  The construction S:FIN(S) is recognised by ProB as equivalent to the Event-B
  finite(S) operator.
  finite(S) operator.
ProB assumes that machines and STRING values are encoded using UTF-8.
ProB assumes that machines and STRING values are encoded using UTF-8.
</pre>
</pre>
=== Event-B Syntax ===
Note that the Event-B syntax in Rodin is slightly different (e.g, no sequences or strings built-in). There is also an Event-B summary by Ken Robinson ([[File:EventB-summary.pdf|PDF File]]). The Event-B syntax is only available for Event-B models in Rodin, ProB2-UI and ProB Jupyter notebooks.


{{Feedback}}
{{Feedback}}

Latest revision as of 13:07, 13 June 2024


Summary of B Syntax

Below we describe the "classical" B syntax as supported by ProB. You may also wish to consult

Logical predicates

 P & Q        conjunction
 P or Q       disjunction
 P => Q       implication
 P <=> Q      equivalence
 not(P)       negation
 !(x).(P=>Q)  universal quantification
 #(x).(P&Q)   existential quantification
 btrue        truth (this is a predicate)
 bfalse       falsity (this is a predicate)

Above, P and Q stand for predicates. Inside the universal quantification, P must give a value type to the quantified variable. Note: you can also introduce multiple variables inside a universal or existential quantification, e.g., !(x,y).(P => Q).

Equality

 E = F   equality
 E /= F  disequality

Booleans

 TRUE     truth value (this is an expression)
 FALSE    falsity value (this is an expression)
 BOOL     set of boolean values ({TRUE,FALSE})
 bool(P)  convert predicate into BOOL value

Warning: TRUE and FALSE are expression values and not predicates in B and cannot be combined using logical connectives. To combine two boolean values x and y using conjunction you have to write x=TRUE & y=TRUE. To convert a predicate such as z>0 into a boolean value you have to use bool(z>0).

Sets

 {}              empty set
 {E}             singleton set
 {E,F}           set enumeration
 {x|P}           comprehension set
 {(x).P|E}       Event-B style comprehension set (brackets needed)
 POW(S)          power set
 POW1(S)         set of non-empty subsets
 FIN(S)          set of all finite subsets
 FIN1(S)         set of all non-empty finite subsets
 card(S)         cardinality
 S*T             cartesian product
 S\/T            set union
 S/\T            set intersection
 S-T or S \ T    set difference
 E:S             element of
 E/:S            not element of
 S<:T            subset of
 S/<:T           not subset of
 S<<:T           strict subset of
 S/<<:T          not strict subset of
 union(S)        generalised union over sets of sets
 inter(S)        generalised intersection over sets of sets
 UNION(z).(P|E)  generalised union with predicate
 INTER(z).(P|E)  generalised intersection with predicate

Integers

 INTEGER         set of integers
 NATURAL         set of natural numbers
 NATURAL1        set of non-zero natural numbers
 INT             set of implementable integers (MININT..MAXINT)
 NAT             set of implementable natural numbers
 NAT1            set of non-zero implementable natural numbers
 n..m            set of numbers from n to m
 MININT          the minimum implementable integer
 MAXINT          the maximum implementable integer
 m>n             greater than
 m<n             less than
 m>=n            greater than or equal
 m<=n            less than or equal
 max(S)          maximum of a set of numbers
 min(S)          minimum of a set of numbers
 m+n             addition
 m-n             difference
 m*n             multiplication
 m/n             division
 m**n            power
 m mod n         remainder of division
 PI(z).(P|E)     set product
 SIGMA(z).(P|E)  set summation
 succ(n)         successor (n+1)
 pred(n)         predecessor (n-1)
 0xH             hexadecimal literal, where H is a sequence of letters in [0-9A-Fa-f]

Relations

 S<->T         relation
 S<<->T        total relation
 S<->>T        surjective relation
 S<<->>T       total surjective relation
 E|->F         maplet
 dom(r)        domain of relation
 ran(r)        range of relation
 id(S)         identity relation
 S<|r          domain restriction
 S<<|r         domain subtraction
 r|>S          range restriction
 r|>>S         range subtraction
 r~            inverse of relation
 r[S]          relational image
 r1<+r2        relational overriding (r2 overrides r1)
 r1><r2        direct product (all pairs (x,(y,z)) with x,y:r1 and x,z:r2)
 (r1;r2)       relational composition {x,y| x|->z:r1 & z|->y:r2}
 (r1||r2)      parallel product (all pairs ((x,v),(y,w)) with x,y:r1 and v,w:r2)
 prj1(S,T)     projection function (usage prj1(Dom,Ran)(Pair))
 prj2(S,T)     projection function (usage prj2(Dom,Ran)(Pair))
               prj1(Pair) and prj2(Pair) are also allowed
 fnc(r)        translate relation A<->B into function A+->POW(B)
 rel(r)        translate relation A<->POW(B) into relation A<->B
 closure1(r)   transitive closure
 closure(r)    reflexive & transitive closure
               (equal to id(TYPEOF_r) \/ closure1(r))
 iterate(r,n)  iteration of r with n>=0
               (Note: iterate(r,0)=id(s) where s=TYPEOF_r)

Functions

 S+->T         partial function
 S-->T         total function
 S+->>T        partial surjection
 S-->>T        total surjection
 S>+>T         partial injection
 S>->T         total injection
 S>+>>T        partial bijection
 S>->>T        total bijection
 %x.(P|E)      lambda abstraction
 f(E)          function application
 f(E1,...,En)  is also supported (as well as f(E1|->E2...|->En))

Sequences

 [] or <>  empty sequence
 [E]       singleton sequence
 [E,F]     constructed sequence
 seq(S)    set of sequences over S
 seq1(S)   set of non-empty sequences over S
 iseq(S)   set of injective sequences over S
 iseq1(S)  set of non-empty injective sequences over S
 perm(S)   set of bijective sequences (permutations) over S
 size(s)   size of sequence
 s^t       concatenation
 E->s      prepend element
 s<-E      append element
 rev(s)    reverse of sequence
 first(s)  first element
 last(s)   last element
 front(s)  front of sequence (all but last element)
 tail(s)   tail of sequence (all but first element)
 conc(S)   concatenation of sequence of sequences
 s/|\n     take first n elements of sequence
 s\|/n     drop first n elements from sequence
 

Records

 struct(ID:S,...,ID:S)  set of records with given fields and field types
 rec(ID:E,...,ID:E)     construct a record with given field names and values
 E'ID                   get value of field with name ID

Identifiers

 ID    must start with letter (ASCII or Unicode), can then contain
       letters (ASCII or Unicode), digits and underscore (_) and
       can end with Unicode subscripts followed by Unicode primes
 M.ID  composed identifier for identifier coming from included machine M
 `ID`  an identifier in backquotes can contain almost any character (except newline)

Strings

 "astring"      a specific (single-line) string value
 '''astring'''  an alternate way of writing (multi-line) strings, no need to escape "
 ```tstring```  template strings, where ${Expr} parts are evaluated and converted to string,
                you can provide options separated by commas in square brackets like $[2f]{Expr}.
                Valid options are: Nf (for floats/reals), Nd (for integer), Np (padding),
                ascii (can be abbreviated to a), unicode (can be abbreviated to u).
 STRING         the set of all strings

Atelier-B does not support any operations on strings, apart from equality and disequality. In ProB, however, some of the sequence operators work also on strings:

 size(s)   the length of a string s
 rev(s)    the reverse of a string s
 s ^ t     the concatenation of two strings
 conc(ss)  the concatenation of a sequence of strings

You can turn this support off using the STRING_AS_SEQUENCE preference. The library LibraryStrings.def in stdlib contains additional useful external functions (like TO_STRING, STRING_SPLIT, FORMAT_TO_STRING, INT_TO_HEX_STRING, ...).

ProB also allows multi-line strings.

As of version 1.7.0, ProB will support the following escape sequences within strings:

 \n  newline (ASCII character 13)
 \r  carriage return (ASCII 10)
 \t  tab (ASCII 9)
 \"  the double quote symbol "
 \'  the single quote symbol '
 \\  the backslash symbol

Within single-line string literals, you do not need to escape '. Within multi-line string literals, you do not need to escape " and you can use tabs and newlines.

ProB assumes that all B machines and strings use the UTF-8 encoding.

Reals

 REAL        set of reals
 FLOAT       set of floating point numbers
 i.f         real literal in decimal notation, where i and f are natural numbers
 i.fEg       real literal in scientific notation, where i,f are natural numbers and g is an integer
 real(n)     convert an integer n into a real number
 floor(r)    convert a real r into an integer
 ceiling(r)  convert a real r into an integer

One can also use a lowercase e for literals in scientific notation (e.g. 1.0e-10). Standard arithmetic operators can be applied to reals: +, - , *, /, SIGMA, PI. Exponentiation of a real with an integer is also allowed. The comparison predicates =, /=, <, >, <=, >= also all work. Support for reals and floats is experimental. The definition in Atelier-B is also not stable yet. Currently ProB supports floating point numbers only. Warning: properties such as associativity and commutativity of arithmetic operators thus do not hold. The library LibraryReals.def in stdlib contains additional useful external functions (like RSIN, RCOS, RLOG, RSQRT, RPOW, ...). You can turn off support for REALS using the preference ALLOW_REALS. The REAL_SOLVER preference how constraints are solved.

Trees

Nodes in the tree are denoted by index sequences (branches), e.g, n=[1,2,1] Each node in the tree is labelled with an element from a domain S. A tree is a function mapping of branches to elements of the domain S.

 tree(S)       set of trees over domain S
 btree(S)      set of binary trees over domain S
 top(t)        top of a tree
 const(E,s)    construct a tree from info E and sequence of subtrees s
 rank(t,n)     rank of the node at end of branch n in the tree t
 father(t,n)   father of the node denoted by branch n in the tree t
 son(t,n,i)    the ith son of the node denoted by branch n in tree t
 sons(t)       the sequence of sons of the root of the tree t
 subtree(t,n)
 arity(t,n)
 bin(E)        construct a binary tree with a single node E
 bin(tl,E,tr)  construct a binary tree with root info E and subtrees tl,tr
 left(t)       the left (first) son of the root of the binary tree t
 right(t)      the right (last) son of the root of the binary tree t
 sizet(t)      the size of the tree (number of nodes)
 prefix(t)     the nodes of the tree t in prefix order
 postfix(t)    the nodes of the tree t in prefix order
 mirror, infix are recognised by the parser but not yet supported by ProB itself

LET and IF-THEN-ELSE

ProB allows the following for predicates, expressions and substitutions:

 IF P THEN E1 END                    conditional branching
 IF P THEN E1 ELSIF E2 END           we also allow multiple ELSIF branches
 IF P THEN E1 ELSE E2 END            but you always need an ELSE branch for expressions and predicates
 IF P THEN E1 ELSIF E2 ELSE E3 END
 LET x1,... BE x1=E1 & ... IN E END  introduce local variables

Note: the expression Ei defining xi is allowed to use x1,...,x(i-1) for predicates/expressions. By setting the preference ALLOW_COMPLEX_LETS to TRUE, this is also allowed for substitutions.

Statements (aka Substitutions)

 skip                                                      no operation
 x := E                                                    assignment
 f(x) := E                                                 functional override
 x :: S                                                    choice from set
 x : (P)                                                   choice by predicate P (constraining x; previous value of x is x$0)
 x <-- OP(x)                                               call operation and assign return value
 G||H                                                      parallel substitution**
 G;H                                                       sequential composition**
 ANY x,... WHERE P THEN G END                              non deterministic choice
 LET x,... BE x=E & ... IN G END
 VAR x,... IN G END                                        generate local variables
 PRE P THEN G END
 ASSERT P THEN G END
 CHOICE G OR H END
 IF P THEN G END
 IF P THEN G ELSE H END
 IF P1 THEN G1 ELSIF P2 THEN G2 ... END
 IF P1 THEN G1 ELSIF P2 THEN G2 ... ELSE Gn END
 SELECT P THEN G WHEN ... WHEN Q THEN H END
 SELECT P THEN G WHEN ... WHEN Q THEN H ELSE I END
 CASE E OF EITHER m THEN G OR n THEN H ... END END
 CASE E OF EITHER m THEN G OR n THEN H ... ELSE I END END
 WHILE P1 DO G INVARIANT P2 VARIANT E END
 WHEN P THEN G END                                         is a synonym for SELECT P THEN G END

**: cannot be used at the top-level of an operation, but needs to be wrapped inside a BEGIN END or another statement (to avoid confusion with the operators ; and || on relations).

Machine header

 MACHINE or REFINEMENT or IMPLEMENTATION

Note: machine parameters can either be SETS (if identifier is all upper-case) or scalars (i.e., integer, boolean or SET element; if identifier is not all upper-case; typing must be provided be CONSTRAINTS)

You can also use MODEL or SYSTEM as a synonym for MACHINE, as well as EVENTS as a synonym for OPERATIONS. ProB also supports the ref keyword of Atelier-B for event refinement.

Machine sections

 CONSTRAINTS         P                     (logical predicate)
 SETS                S;T={e1,e2,...};...
 FREETYPES           x=x1,x2(arg2),...;...
 CONSTANTS           x,y,...
 CONCRETE_CONSTANTS  cx,cy,...
 PROPERTIES          P                     (logical predicate)
 DEFINITIONS         m(x,...) == BODY;...
 VARIABLES           x,y,...
 CONCRETE_VARIABLES  cv,cw,...
 INVARIANT           P                     (logical predicate)
 ASSERTIONS          P;...;P               (list of logical predicates separated by ;)
 INITIALISATION      S                     (substitution)
 OPERATIONS          O;...                 (operations)

Machine inclusion

 USES      list of machines
 INCLUDES  list of machines
 SEES      list of machines
 EXTENDS   list of machines
 PROMOTES  list of operations
 REFINES   machine

Note: Refinement machines should express the operation preconditions in terms of their own variables.

Definitions

 NAME1 == Expression;     Definition without arguments
 NAME2(ID,...,ID) == E2;  Definition with arguments
 "FILE.def";              Include definitions from file

There are a few specific definitions which can be used to influence ProB:

 GOAL == P                          to define a custom Goal predicate for Model Checking
                                    (the Goal is also set by using "Advanced Find...")
 SCOPE == P                         to limit the search space to "interesting" nodes
 scope_SETNAME == n..n              to define custom cardinality for set SETNAME
 scope_SETNAME == n                 equivalent to 1..n
 SET_PREF_MININT == n
 SET_PREF_MAXINT == n
 SET_PREF_MAX_INITIALISATIONS == n  max. number of intialisations computed
 SET_PREF_MAX_OPERATIONS == n       max. number of enablings per operation computed
 MAX_OPERATIONS_OPNAME == n         max. number of enablings for the operation OPNAME
 SET_PREF_SYMBOLIC == TRUE/FALSE
 SET_PREF_TIME_OUT == n             time out for operation computation in ms
 ASSERT_LTL... == "LTL Formula"  	using X,F,G,U,R LTL operators +
                                    Y,O,H,S Past-LTL operators +
                                    atomic propositions: e(OpName), [OpName], {BPredicate}
 HEURISTIC_FUNCTION == n            in directed model-checking mode nodes with smalles value will be processed first

The following definitions allow providing a custom state visualization (n can be empty or a number):

 ANIMATION_FUNCTIONn == e                           a function (INT*INT) +-> INT or an INT
 ANIMATION_FUNCTION_DEFAULT == e                    a function (INT*INT) +-> INT or an INT
                                                    instead of any INT above you can also use BOOL or any SET
                                                    as a result you can also use STRING values,
                                                    or even other values which are pretty printed
 ANIMATION_IMGn == "PATH to .gif"                   a path to a gif file
 ANIMATION_STRn == "sometext"                       a string without spaces;
                                                    the result integer n will be rendered as a string
 ANIMATION_STR_JUSTIFY_LEFT == TRUE                 computes the longest string in the outputs and pads
                                                    the other strings accordingly
 SET_PREF_TK_CUSTOM_STATE_VIEW_PADDING == n         additional padding between images in pixels
 SET_PREF_TK_CUSTOM_STATE_VIEW_STRING_PADDING == n  additional padding between text in pixels

The following definitions allow providing a custom state graph (n can be empty or a number):

 CUSTOM_GRAPH_NODESn == e  define a set of nodes to be shown,
                           nodes can also be pairs (Node,Colour), triples (Node,Shape,Colour) or
                           records or sets of records like
                           rec(color:Colour, shape:Shape, style:Style, label:Label, value:Node, ...)
                           Colours are strings of valid Dot/Tk colors (e.g., "maroon" or "red")
                           Shapes are strings of valid Dot shapes (e.g., "rect" or "hexagon"), and
                           Styles are valid Dot shape styles (e.g., "rounded" or "solid" or "dashed")
 CUSTOM_GRAPH_EDGESn == e  define a relation to be shown as a graph
                           edges can either be pairs (node1,node2) or triples (node1,Label,node2)
                           where Label is either a Dot/Tk color or a string or value representing
                           the label to be used for the edges

In both cases e can also be a record which defines default dot attributes like color, shape, style and description, e.g.:

 CUSTOM_GRAPH_NODES == rec(color:"blue", shape:"rect", style:"filled", nodes:e);
 CUSTOM_GRAPH_EDGES == rec(color:"red", style:"dotted", dir:"none", penwidth:2, edges:e)

Alternatively, the complete graph can be put into one definition using CUSTOM_GRAPH. You have to define a single CUSTOM_GRAPH definition of a record with global graph attributes

  (like rankdir or layout) and optionally with edges and nodes attributes (replacing
   CUSTOM_GRAPH_EDGES and CUSTOM_GRAPH_NODES respectively), e.g.:
    CUSTOM_GRAPH == rec(layout:"circo", nodes:mynodes, edges:myedges)

You can now also use a single CUSTOM_GRAPH definition of a record with global graph attributes (like rankdir or layout) and optionally with edges and nodes attributes (replacing CUSTOM_GRAPH_EDGES and CUSTOM_GRAPH_NODES respectively), e.g.:

 CUSTOM_GRAPH == rec(layout:"circo", nodes:mynodes, edges:myedges)

You can also provide SEQUENCE_CHART_opname definitions for generating UML sequence charts.

These DEFINITIONS affect VisB:

 VISB_JSON_FILE == "PATH to .json"  a path to a default VisB JSON file for visualisation;
                                    if it is "" an empty SVG will be created
 VISB_SVG_OBJECTSn == ...           define a record or set of records for creating new SVG objects
 VISB_SVG_UPDATESn == ...           define a record or set of records containing updates of SVG objects
 VISB_SVG_HOVERSn == ...            define a record or set of records for VisB hover functions
 VISB_SVG_BOX == ...                record with dimensions (height, width) of a default empty SVG
 VISB_SVG_CONTENTS == ...           defines a string to be included into a created empty SVG file

Comments and Pragmas

B supports two styles of comments:
 /* ... */  block comments
 // ...     line comments

ProB recognises several pragma comments of the form /*@ PRAGMA VALUE */ The whitespace between @ and PRAGMA is optional.

 /*@symbolic */             put before comprehension set, lambda, union or composition to instruct ProB
                            to keep it symbolic and not try to compute it explicitly
 /*@label LBL */            associates a label LBL with the following predicate
                            (LBL must be identifier or a string "....")
 /*@desc DESC */            associates a description DESC with the preceding predicate or
                            introduced identifier (in VARIABLES, CONSTANTS,... section)
                            There are three special descriptions:
                            /*@desc memo*/          to be put after identifiers in the ABSTRACT_CONSTANTS section
                                                    indicating that these functions should be memoized
                            /*@desc expand*/        to be put after identifiers (in VARIABLES, CONSTANTS,... section)
                                                    indicating that they should be expanded and not kept symbolically
                            /*@desc prob-ignore */  to be put after predicates (e.g., in PROPERTIES) which
                                                    should be ignored by ProB
                                                    when the preference USE_IGNORE_PRAGMAS is TRUE
 /*@file PATH */            associates a file for machines in SEES, INCLUDES, ...
                            put pragma after a seen or included machine
 /*@package NAME */         at start of machine, machine file should be in folder NAME/...
                            NAME can be qualified N1.N2...Nk, in which case the machine
                            file should be in N1/N2/.../Nk
 /*@import-package NAME */  adds ../NAME to search paths for SEES,...
                            NAME can also be qualified N1.N2...Nk, use after package pragma
 /*@generated */            can be put at the top of a machine file; indicates the machine
                            is generated from some other source

File Extensions

 .mch   for abstract machine files
 .ref   for refinement machines
 .imp   for implementation machines
 .def   for DEFINITIONS files
 .rmch  for Rules machines for data validation

Free Types

More information can be found here.

Free types exist in Z and in the Rodin theory plugin and are supported by ProB. You can also define new free types in classical B by adding a FREETYPES clause with free type definitions separated by semicolon.

Here is a definition of an inductive type IntList for lists of integers constructed using inil and icons:

FREETYPES
  IntList = inil, icons(INTEGER*IntList)

Differences with AtelierB/B4Free

Basically, ProB tries to be compatible with Atelier B and conforms to the semantics of Abrial's B-Book and of Atelier B's reference manual. Here are the main differences with Atelier B:

 - tuples without parentheses are not supported; write (a,b,c) instead of a,b,c
 - relational composition has to be wrapped into parentheses; write (f;g)
 - parallel product also has to be wrapped into parentheses; write (f||g)
 - not all tree operators are supported
 - the VALUES clause is only partially supported
 - definitions have to be syntactically correct and be either an expression,
   predicate or substitution;
   the arguments to definitions have to be expressions;
   definitions which are predicates or substitutions must be declared before first use
 - definitions are local to a machine
 - for ProB the order of fields in a record is not relevant (internally the fields are
   sorted), Atelier-B reports a type error if the order of the name of the fields changes
 - well-definedness: for disjunctions and implications ProB uses the L-system
   of well-definedness (i.e., for P => Q, P should be well-defined and
   if P is true then Q should also be well-defined)
 - ProB allows WHILE loops and sequential composition in abstract machines
 - ProB now allows the IF-THEN-ELSE and LET for expressions and predicates
   (e.g., IF x<0 THEN -x ELSE x END or LET x BE x=f(y) IN x+x END)
 - ProB's type inference is stronger than Atelier-B's, much less typing predicates
   are required
 - You can apply prj1 and prj2 without providing the type arguments, e.g., prj2(prj1(1|->2|->3))
 - ProB accepts operations with parameters but without pre-conditions
 - ProB allows identifiers consisting of a single character and identifiers in single backquotes (`id`)
 - ProB allows to use <> for the empty sequence (but this use is deprecated)
 - ProB allows escape codes (\n, \', \", see above) and supports UTF-8 characters in strings,
   and ProB allows multi-line string literals written using three apostrophes ('''string''')
   as well as template strings using three backquotes (e.g., ```1+2=${1+2}```)
 - ProB allows a she-bang line in machine files starting with #!
 - ProB allows btrue and bfalse as predicates in B machines
 - ProB allows to use the Event-B relation operators <<->, <->>, <<->>
 - ProB allows set comprehensions with an extra expression like {x•x:1..10|x*x}.
 - The FREETYPES section and the external libraries (LibraryStrings.def, ...) do not exist in Atelier-B

See also our Wiki for documentation:

Also note that there are various differences between BToolkit and AtelierB/ProB:

 - AtelierB/ProB do not allow true as predicate;
   e.g., PRE true THEN ... END is not allowed (use BEGIN ... END instead)
   ProB now allows btrue and bfalse to be used as predicates.
 - AtelierB/ProB do not allow a machine parameter to be used in the PROPERTIES
 - AtelierB/ProB require a scalar machine parameter to be typed in the
   CONSTRAINTS clause
 - In AtelierB/ProB the BOOL type is pre-defined and cannot be redefined

If you discover more differences, please let us know!

Other notes

 ProB now supports the Unicode mathematical symbols, exactly like Atelier-B
 ProB is best at treating universally quantified formulas of the form
   !x.(x:SET => RHS), or
   !(x,y).(x|->y:SET =>RHS), 
   !(x,y,z).(x|->y|->z:SET =>RHS), ...;
 otherwise the treatment of !(x1,...,xn).(LHS => RHS) may delay until all values
 treated by LHS are known.
 Similarly, expressions of the form SIGMA(x).(x:SET|Expr) and PI(x).(x:SET|Expr)
 lead to better constraint propagation.
 The construction S:FIN(S) is recognised by ProB as equivalent to the Event-B
 finite(S) operator.
 ProB assumes that machines and STRING values are encoded using UTF-8.

Event-B Syntax

Note that the Event-B syntax in Rodin is slightly different (e.g, no sequences or strings built-in). There is also an Event-B summary by Ken Robinson (File:EventB-summary.pdf). The Event-B syntax is only available for Event-B models in Rodin, ProB2-UI and ProB Jupyter notebooks.


Feedback

Please help us to improve this documentation by providing feedback in our bug tracker, asking questions in our prob-users group or sending an email to Michael Leuschel.