(3 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
= How to install Z3 for ProB = | = How to install Z3 for ProB = | ||
For Linux and Mac OS, the extension is built on our infrastructure and ships with the regular ProB download. You don't need to install Z3 on your system. | |||
For Linux and Mac OS, the extension is built | |||
= What can be translated = | = What can be translated = | ||
Currently, the Z3 translation is unable to cope with the following constructs: | Currently, the Z3 translation is unable to cope with the following constructs: | ||
* Generalised concatenation | * Generalised concatenation | ||
* Permutation | * Permutation | ||
* Iteration and Closure | * Iteration and Closure | ||
When using Z3 alone, the solver will report "unsupported_type_or_expression" if it can not handle parts of a constraint. | When using Z3 alone, the solver will report "unsupported_type_or_expression" if it can not handle parts of a constraint. | ||
Line 55: | Line 38: | ||
>>> :z3 X<Y & Y<X & X:INTEGER | >>> :z3 X<Y & Y<X & X:INTEGER | ||
PREDICATE is FALSE | PREDICATE is FALSE | ||
Here an example that shows that Z3 can be used to solve constraints and obtain solutions for the open variables: | Here an example that shows that Z3 can be used to solve constraints and obtain solutions for the open variables: | ||
Line 79: | Line 54: | ||
* [https://www3.hhu.de/stups/downloads/z3interface/rawdata raw data] from our benchmarks including the R scripts to generate the | * [https://www3.hhu.de/stups/downloads/z3interface/rawdata raw data] from our benchmarks including the R scripts to generate the | ||
* [https://www3.hhu.de/stups/downloads/z3interface/output resulting graphs]. | * [https://www3.hhu.de/stups/downloads/z3interface/output resulting graphs]. | ||
A [https://link.springer.com/article/10.1007/s10009-022-00682-y journal paper] describing an extended interface to Z3 and alternative translation from B to SMT-LIB using Lambda functions has been published in the International Journal on Software Tools for Technology Transfer in 2022. |
The current nightly versions of ProB can make use of Z3 as an alternate way of solving constraints.
One can start a REPL (Read-Eval-Print-Loop) by starting probcli with the '-repl' command line option. Any predicate preceded with :z3 will be solved by Z3 considering the current machine's state. The command :z3-free can be used to solve a constraint without considering the current machine's state. The full integration of Z3 and ProB’s kernel can be enabled by setting the corresponding preference by passing
-p SMT SUPPORTED INTERPRETER TRUE
on the command line.
For Linux and Mac OS, the extension is built on our infrastructure and ships with the regular ProB download. You don't need to install Z3 on your system.
Currently, the Z3 translation is unable to cope with the following constructs:
When using Z3 alone, the solver will report "unsupported_type_or_expression" if it can not handle parts of a constraint.
When used together with ProB, everything Z3 can not be coped with will be handled by ProB alone automatically.
Using the repl, one can try out different examples.
First an example which can be solved by Z3 and not by ProB:
>>> X<Y & Y<X & X:INTEGER % Timeout when posting constraint: % kernel_objects:(_981727#>0) ### Warning: enumerating X : INTEGER : inf:sup ---> -1:3 Existentially Quantified Predicate over X,Y is UNKNOWN [FALSE with ** ENUMERATION WARNING **]
Using the Z3 translation it can be solved:
>>> :z3 X<Y & Y<X & X:INTEGER PREDICATE is FALSE
Here an example that shows that Z3 can be used to solve constraints and obtain solutions for the open variables:
>>> :z3 {x} /\ {y} /= {} & x:1000000..20000000 & y>=0 & y<2000000 PREDICATE is TRUE Solution: x = 1000000 y = 1000000
As of version 1.10.0-beta4 you can also issue the <t>:z3-version</t> command in the REPL to obtain version information.
A paper describing the integration of ProB and Z3 has been published at iFM 2016. You can download the
A journal paper describing an extended interface to Z3 and alternative translation from B to SMT-LIB using Lambda functions has been published in the International Journal on Software Tools for Technology Transfer in 2022.