Line 145: | Line 145: | ||
"id": "start_blinking", | "id": "start_blinking", | ||
"event": "ENV_Pitman_DirectionBlinking", | "event": "ENV_Pitman_DirectionBlinking", | ||
activating" : ["blinking_on", "blinking_off"] | "activating" : ["blinking_on", "blinking_off"] | ||
} | } | ||
</pre> | |||
<pre> | |||
{"id": "blinking_on", | |||
"execute": "RTIME_BlinkerOn", | |||
"after": "curDeadlines(blink_deadline)", | |||
"activating" : "blinking_off", ...} | |||
</pre> | |||
<pre> | |||
{"id": "blinking_off", | |||
"execute": "RTIME_BlinkerOff", | |||
"after": "curDeadlines(blink_deadline)", | |||
"activating" : "blinking_on", ...} | |||
</pre> | </pre> | ||
SimB is a simulator built on top of ProB. It is available in the latest SNAPSHOT version in the new JavaFX based user interface ProB2-UI (https://github.com/hhu-stups/prob2_ui), The modeler can write SimB annotations for a formal model to simulate it. Examples are available at https://github.com/favu100/SimB-examples. Furthermore, it is then possible to validate probabilistic and timing properties with statistical validation techniques such as hypothesis testing and estimation.
More recently, a SimB is extended by a new feature, called interactive simulation. For interactive simulation, a modeler has to encode SimB listeners on events, triggering a SimB simulation. This feature allows user interaction to trigger a simulation. Interactive Simulation examples are available at https://github.com/favu100/SimB-examples/tree/main/Interactive_Examples.
To cite SimB as a tool, its timing or probabilistic simulation features, or SimBs statistical validation techniques, please use:
@InProceedings{simb, Author = {Vu, Fabian and Leuschel, Michael and Mashkoor, Atif}, Title = {{Validation of Formal Models by Timed Probabilistic Simulation}}, Booktitle = {Proceedings ABZ}, Year = 2021, Series = {LNCS}, Volume = {12709}, Pages = {81--96} }
To cite SimBs interactive simulation, please use:
@InProceedings{simb, Author = {Vu, Fabian and Leuschel, Michael}, Title = {{Validation of Formal Models by Interactive Simulation}}, Booktitle = {Proceedings ABZ}, Year = 2023 }
Start SimB via "Open Simulator" in the "Advanced" Menu after opening a machine.
Now, you can open a SimB file (JSON format) controlling the underlying formal model.
A SimB file consists of SimB activations and SimB listeners to simulate the model. SimB activations encode an activation diagram with probabilistic and timing elements for automatic simulation. To enable interactive simulation, it is also necessary to encode interactive elements aka. SimB listeners which trigger other SimB activations. Within these elements, the modeler can user B expressions which are evaluated on the current state.
The SimB file always contains an activations field storing a list of probabilistic and timing elements to control the simulation. Probabilistic values are always evaluated to ensure that the sum of all possibilities is always 1. Otherwise an error will be thrown at runtime. There are two types of activations: direct activation and probabilistic choice. All activations are identified by their id.
A direct activation activates an event to be executed in the future. It requires the fields id, and execute to be defined. All other fields can be defined optionally.
{ "id": ... "execute": ... "after": ... "activating": ... "activationKind": ... "additionalGuards": ... "fixedVariables": .... "probabilisticVariables": .... "priority": ... }
A probabilistic choice selects an event to be executed in the future. It requires the two fields id, and chooseActivation. chooseActivation is a Map storing Key-Value pairs where activations (identified by their id) are mapped to a probability. It is possible to chain multiple probabilistic choices together, but eventually, a direct activation must be reached.
{ "id": ... "chooseActivation": ... }
In the following, an example for a SimB file controlling a Traffic Lights for cars and pedestrians (with timing and probabilistic behavior) is shown:
{ "activations": [ {"id":"$initialise_machine", "execute":"$initialise_machine", "activating":"choose"}, {"id":"choose", "chooseActivation":{"cars_ry": "0.8", "peds_g": "0.2"}}, {"id":"cars_ry", "execute":"cars_ry", "after":5000, "activating":"cars_g"}, {"id":"cars_g", "execute":"cars_g", "after":500, "activating":"cars_y"}, {"id":"cars_y", "execute":"cars_y", "after":5000, "activating":"cars_r"}, {"id":"cars_r", "execute":"cars_r", "after":500, "activating":"choose"}, {"id":"peds_g", "execute":"peds_g", "after":5000, "activating":"peds_r"}, {"id":"peds_r", "execute":"peds_r", "after":5000, "activating":"choose"} ] }
Interactive elements in SimB are so called SimB listeners. A SimB listener consists of four fields id, event, predicate, and activating. This means that the SimB listener associated with id listens on a manual/user interaction on event with predicate after which activations in activating are triggered. predicate is optional and defaults to 1=1.
{ "id": ... "event": ... "predicate": ... "activating": [...] }
The following SimB listener is from a case study which models the car's lighting system controlled by pitman controller, the key ignition, and the warning lights button. It states that SimB listens on user interaction on the event ENV_Pitman_DirectionBlinking, to trigger two SimB activations blinking_on and blinking_off afterward. Practically, this means that a driver's input on the pitman for direction blinking activates the blinking cycle for the corresponding direction indicators.
{ "id": "start_blinking", "event": "ENV_Pitman_DirectionBlinking", "activating" : ["blinking_on", "blinking_off"] }
{"id": "blinking_on", "execute": "RTIME_BlinkerOn", "after": "curDeadlines(blink_deadline)", "activating" : "blinking_off", ...}
{"id": "blinking_off", "execute": "RTIME_BlinkerOff", "after": "curDeadlines(blink_deadline)", "activating" : "blinking_on", ...}
Using a SimB file, the modeler can play a single simulation on the underlying model in real-time. The modeler can then manually check whether the model behaves as desired. Combining VisB and SimB, a simulation can be seen as an animated picture similar to a GIF picture. This gives the domain expert even a better understanding of the model.
A Traffic Light example (based on the SimB file shown in Using_SimB ) simulating the first 21 seconds is shown below.
Based on a single simulation, the modeler can generate a timed trace which is also stored in the SimB format. Afterwards, it can be used to replay a scenario. similar to real-time simulation.
Below, the resulting timed trace for the scenario in Real-Time Simulation is shown
{ "activations": [ { "execute": "$initialise_machine", "after": "0", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": { "tl_cars": "red", "tl_peds": "red" }, "probabilisticVariables": null, "activating": [ "cars_ry_1" ], "id": "$initialise_machine" }, { "execute": "cars_ry", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "cars_g_2" ], "id": "cars_ry_1" }, { "execute": "cars_g", "after": "500", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "cars_y_3" ], "id": "cars_g_2" }, { "execute": "cars_y", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "cars_r_4" ], "id": "cars_y_3" }, { "execute": "cars_r", "after": "500", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "peds_g_5" ], "id": "cars_r_4" }, { "execute": "peds_g", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": [ "peds_r_6" ], "id": "peds_g_5" }, { "execute": "peds_r", "after": "5000", "priority": 0, "additionalGuards": null, "activationKind": null, "fixedVariables": null, "probabilisticVariables": null, "activating": null, "id": "peds_r_6" } ], "metadata": { "fileType": "Timed_Trace", "formatVersion": 1, "savedAt": "2021-03-03T11:04:08.460477Z", "creator": "User", "proB2KernelVersion": "4.0.0-SNAPSHOT", "proBCliVersion": null, "modelName": null } }
It is also possible to apply Monte Carlo simulation to generate a certain number of simulations. Here, all simulations are played without real time. However, it is possible for the user, to replay the generated scenarios with real-time afterwards.
The input parameters are:
Furthermore, there are two statistical validation techniques that can be applied based on Monte Carlo simulations: Hypothesis Testing and Estimation.
Hypothesis Testing expects the same parameters as Monte Carlo Simulation: Number of Simulations, Starting Condition and Ending Condition.
The additional input parameters for Hypothesis Testing are:
Estimation expects the same parameters as Monte Carlo Simulation: Number of Simulations, Starting Condition and Ending Condition.
The additional input parameters for Estimation are:
For an estimated value e, a desired value d, and an epsilon eps, it checks for each simulation whether e is within [d - eps, d + eps]