
External Functions

LibraryStrings
In pure B there are only two built-in operators on strings: equality and inequality . This
library provides several string manipulation functions, and assumes that STRINGS are
sequences of unicode characters (in UTF-8 encoding). You can obtain the definitions below by
putting the following into your DEFINITIONS clause:

DEFINITIONS "LibraryStrings.def"

The file LibraryStrings.def is bundled with ProB and can be found in the stdlib
folder. You can also include the machine LibraryStrings.mch instead of the definition file;
the machine defines some of the functions below as proper B functions (i.e., functions for which
you can compute the domain and use constructs such as relational image).

= ≠

In [29]:

STRING_APPEND
This external function takes two strings and concatenates them.

Type: .STRING × STRING → STRING

In [2]:

In [3]:

STRING_LENGTH
This external function takes a string and returns the length.

Type: .STRING → INTEGER

In [4]:

Out[29]: Loaded machine: Jupyter_LibraryStrings

Out[2]: "abcabc"

Out[3]: "abc"

Out[4]: 3

::load
MACHINE Jupyter_LibraryStrings
DEFINITIONS "LibraryStrings.def"
END

STRING_APPEND("abc","abc")

STRING_APPEND("abc","")

STRING_LENGTH("abc")

1
2
3
4

1

1

1

In [5]:

STRING_SPLIT
This external function takes two strings and separates the first string according to the separator
specified by the second string.

Type: .STRING × STRING → seq(STRING)

In [6]:

In [7]:

In [8]:

In [9]:

I am not sure the following result makes sense, maybe a sequence of all characters is more
appropriate?

In [10]:

In [11]:

STRING_JOIN
This external function takes a sequence of strings and a separator string and joins the strings
together inserting the separators as often as needed. It is the inverse of the STRING_SPLIT
function.

Type: .seq(STRING) × STRING → STRING

In [12]:

Out[5]: 0

Out[6]: {(1↦"filename"),(2↦"ext")}

Out[7]: {(1↦"filename.ext")}

Out[8]: ["usr","local","lib"]

Out[9]: {(1↦"")}

Out[10]: {(1↦"usr/local/lib")}

Out[11]: {(1↦"usr/lo"),(2↦"/lib")}

Out[12]: "usr/local/lib"

STRING_LENGTH("")

STRING_SPLIT("filename.ext",".")

STRING_SPLIT("filename.ext","/")

STRING_SPLIT("usr/local/lib","/")

STRING_SPLIT("",".")

STRING_SPLIT("usr/local/lib","")

STRING_SPLIT("usr/local/lib","cal")

STRING_JOIN(["usr","local","lib"],"/")

1

1

1

1

1

1

1

1

In [13]:

In [14]:

STRING_CHARS
This external function takes a strings splits it into a sequence of the individual characters. Each
character is represented by a string.

Type: .STRING → seq(STRING)

In [15]:

In [16]:

In [17]:

STRING_CODES
This external function takes a strings splits it into a sequence of the individual characters. Each
character is represented by a natural number (the ASCII or Unicode representation of the
character).

Type: .STRING → seq(INTEGER)

In [18]:

In [19]:

STRING_IS_INT

This external predicate takes a string and is true if the string represents an integer.

Type: .STRING

Out[13]: "usr/local/lib"

Out[14]: "usr/local/lib"

Out[15]: ∅

Out[16]: ["a","b","c"]

Out[17]: "a.b.c"

Out[18]: ∅

Out[19]: [65,90,32,97,122,32,48,57]

STRING_JOIN(["usr/lo","/lib"],"cal")

STRING_JOIN(["usr/local/lib"],"")

STRING_CHARS("")

STRING_CHARS("abc")

STRING_JOIN(STRING_CHARS("abc"),".")

STRING_CODES("")

STRING_CODES("AZ az 09")

1

1

1

1

1

1

1

In [20]:

In [21]:

In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

In [27]:

In [28]:

STRING_TO_INT
This external function takes a string and converts it into an integer. An error is raised if this
cannot be done. It is safer to first check with STRING_IS_INT whether the conversion can be
done.

Type: .STRING → INTEGER

In [29]:

In [30]:

Out[20]: TRUE

Out[21]: TRUE

Out[22]: TRUE

Out[23]: FALSE

Out[24]: FALSE

Out[25]: FALSE

Out[26]: TRUE

Out[27]: TRUE

Out[28]: TRUE

Out[29]: 1024

Out[30]: −1

STRING_IS_INT("1204")

STRING_IS_INT("-1204")

STRING_IS_INT(" - 1204")

STRING_IS_INT("1.1")

STRING_IS_INT("1.0")

STRING_IS_INT("a")

STRING_IS_INT("1000000000000000000000000000")

STRING_IS_INT("-00001")

STRING_IS_INT("00002")

STRING_TO_INT("1024")

STRING_TO_INT(" - 00001")

1

1

1

1

1

1

1

1

1

1

1

INT_TO_STRING
This external function converts an integer to a string representation.

Type: .INTEGER → STRING

In [31]:

In [32]:

In [33]:

In [34]:

DEC_STRING_TO_INT
This external function takes a decimal string (with optional decimal places) and converts it to an
integer with the given precision (rounding if required).

Type: .STRING × INTEGER → INTEGER

In [35]:

In [36]:

In [37]:

In [38]:

In [39]:

In [40]:

Out[31]: "1024"

Out[32]: "-1024"

Out[33]: "-1"

Out[34]: TRUE

Out[35]: 1024

Out[36]: 102400

Out[37]: 102

Out[38]: 103

Out[39]: −103

Out[40]: 102423

INT_TO_STRING(1024)

INT_TO_STRING(-1024)

INT_TO_STRING(STRING_TO_INT(" - 00001"))

STRING_TO_INT(INT_TO_STRING(-1))=-1

DEC_STRING_TO_INT("1024",0)

DEC_STRING_TO_INT("1024",2)

DEC_STRING_TO_INT("1024",-1)

DEC_STRING_TO_INT("1025",-1)

DEC_STRING_TO_INT(" -1025",-1)

DEC_STRING_TO_INT("1024.234",2)

1

1

1

1

1

1

1

1

1

1

In [41]:

In [42]:

INT_TO_DEC_STRING
This external function converts an integer to a decimal string representation with the precision
provided by the second argument.

Type: .INTEGER × INTEGER → STRING

In [43]:

In [44]:

In [45]:

In [46]:

In [47]:

INT_TO_HEX_STRING
This external function converts an integer to a hexadecimal string representation.

Type: .INTEGER → STRING

In [3]:

In [4]:

Out[41]: 102400
0000000000000000000000000000000000

Out[42]: TRUE

Out[43]: "12.04"

Out[44]: "-1.204"

Out[45]: "0.00"

Out[46]: "120400"

Out[47]: "-0.010"

Out[3]: "fe"

Out[4]: "0"

DEC_STRING_TO_INT("1024",100)

DEC_STRING_TO_INT("10000000000000000000000000000000000",-32)=100

INT_TO_DEC_STRING(1204,2)

INT_TO_DEC_STRING(-1204,3)

INT_TO_DEC_STRING(0,2)

INT_TO_DEC_STRING(1204,-2)

INT_TO_DEC_STRING(-10,3)

INT_TO_HEX_STRING(254)

INT_TO_HEX_STRING(0)

1

1

1

1

1

1

1

1

1

In [5]:

In [7]:

TO_STRING
This external function converts a B data value to a string representation.

Type: .τ → STRING

In [48]:

In [49]:

In [50]:

In [51]:

FORMAT_TO_STRING
This external function takes a format string and a B sequence of values and generates an
output string, where the values have been inserted into the format string in place of the ~w
placeholders.

the length of sequence must correspond to the number of ~w in the format string.
the format string follows the conventions of SICStus Prolog. E.g., one can use ~n for
newlines.

Type: .(STRING ∗ seq(τ)) → STRING

In [52]:

In [53]:

Out[5]: "-fe"

Out[7]: "fffffffffffffffffffffffff"

Out[48]: "1024"

Out[49]: "1024"

Out[50]: "{2,3,5}"

Out[51]: "((TRUE|->3)|->{(11|->rec(a:22,b:33))})"

Out[52]: "two to the power ten = 1024"

Out[53]: "My two sets are {1,2} and {}"

INT_TO_HEX_STRING(-254)

INT_TO_HEX_STRING(2**100-1)

TO_STRING(1024)

TO_STRING("1024")

TO_STRING({2,3,5})

TO_STRING((TRUE,3,{11|->rec(a:22,b:33)}))

FORMAT_TO_STRING("two to the power ten = ~w",[2**10])

FORMAT_TO_STRING("My two sets are ~w and ~w",[1..2,2..1])

1

1

1

1

1

1

1

1

Format Strings

Various external functions and predicates work with format strings. ProB uses the conventions
of the SICStus Prolog format string.

~n inserts a newline into the generated output
~Nn where N is a number: it inserts newlines into the output
~w inserts the next argument into the generated output
~i consumes the next argument but ignores it; i.e., nothing is inserted into the output
~~ inserts the tilde symbol into the generated output
~N inserts a newline if not at the beginning of the line

SICStus Prolog also uses a few other formatting codes, such as ~@ , ~p ,... which should not
be used.

N

STRINGIFY
This external function converts a B expression to a string representation of the expression, not
the value. It can be used to obtain the name of variables. Warning: ProB may simplify and
rewrite expressions (you can turn this off by setting the OPTIMIZE_AST preference to false).

Type: .τ → STRING

In [30]:

Compare this with the result of TO_STRING:

In [31]:

In [34]:

Out[30]: "dom({1 |-> 2})"

Out[31]: "{1}"

Out[34]: stringify tostring
"\"abc\"" "abc"

STRINGIFY(dom({1|->2}))

TO_STRING(dom({1|->2}))

:table rec(stringify:STRINGIFY("abc"),tostring:TO_STRING("abc"))

1

1

1

Choose Operator
You can obtain access to the definitions below by putting the following into your DEFINITIONS
clause: DEFINITIONS "CHOOSE.def"

Choose
This external function takes a set and returns an element of the set. This is a proper
mathematical function, i.e., it will always return the same value given the same argument. It is
also known as Hilbert's operator.

The operator raises an error when it is called with an empty set. Also, it is not guaranteed to
work for infinite sets.

Type: .POW(T) → T

In [54]:

In [55]:

In [56]:

In [57]:

In [58]:

In [59]:

Out[54]: Loaded machine: Jupyter_CHOOSE

Out[55]: 1

Out[56]: 1

Out[57]: "a"

Out[58]: 0

Out[59]: 0

::load
MACHINE Jupyter_CHOOSE
DEFINITIONS "CHOOSE.def"
END

CHOOSE(1..3)

CHOOSE({1,2,3})

CHOOSE({"a","b","c"})

CHOOSE(NATURAL)

CHOOSE(INTEGER)

1
2
3
4

1

1

1

1

1

The operator is useful for writing WHILE loops or recursive functions which manipulate sets.
The following example defines a recursive summation function using the CHOOSE operator.

MACHINE RecursiveSigmaCHOOSEv3
DEFINITIONS
 "Choose.def"
ABSTRACT_CONSTANTS sigma
PROPERTIES
 sigma: POW(INTEGER) <-> INTEGER &
 sigma = %x.(x:POW(INTEGER) |
 IF x={} THEN 0 ELSE
 LET c BE c=CHOOSE(x) IN c+sigma(x-{c}) END
 END
)
ASSERTIONS
 sigma({3,5,7}) = 15;
END

Sorting Sets
You can obtain access to the definitions below by putting the following into your DEFINITIONS
clause: DEFINITIONS "SORT.def"

Alternatively you can use the following if you use ProB prior to version 1.7.1: DEFINITIONS
 SORT(X) == [];
 EXTERNAL_FUNCTION_SORT(T) == (POW(T)-->seq(T));

This external function SORT takes a set and translates it into a B sequence. It uses ProB's
internal order for sorting the elements. It will not work for infinite sets. Type: .POW(τ) → seq(τ)

In [2]:

In [61]:

In [62]:

In [63]:

Out[2]: Loaded machine: Jupyter_SORT

Out[61]: [1,2,3]

Out[62]: [6,9,27]

Out[63]: ["1","10","11","2","a","aa","ab","b"]

::load
MACHINE Jupyter_SORT
DEFINITIONS "SORT.def"
END

SORT(1..3)

SORT({3*3,3+3,3**3})

SORT({"ab","aa","a","b","10","1","2","11"})

1
2
3
4

1

1

1

In [64]:

A related external function is LEQ_SYM_BREAK which allows one to compare values of
arbitrary type. Calls to this external function are automatically inserted by ProB for symmetry
breaking of quantifiers. It should currently not be used for sets or sequences.

The SORT.def file also contains a definition for the SQUASH operator which takes a sequence
with gaps and completes it into a proper sequence:

In [6]:

LibraryMeta
This library provides various meta information about ProB and the current model. You can
obtain the definitions below by putting the following into your DEFINITIONS clause:

DEFINITIONS "LibraryMeta.def"

The file LibraryMeta.def is also bundled with ProB and can be found in the stdlib
folder.

In [1]:

PROB_INFO_STR
This external function provides access to various information strings about ProB. Type:

.STRING → STRING

In [66]:

In [67]:

In [68]:

Out[64]: [("a"↦0),("a"↦1),("b"↦0)]

Out[6]: ["a","b","c","c","d"]

Out[1]: Loaded machine: Jupyter_LibraryMeta

Out[66]: "1.8.2-beta2"

Out[67]: "ce702ba99f667cb03de8ed41ab58ba72db9112c3"

Out[68]: "Fri Aug 10 17:40:37 2018 +0200"

SORT({("a"|->1),("b"|->0),("a"|->0)})

SQUASH({0|->"a",100|->"c",1001 |->"d",4|->"b", 44|->"c"})

::load
MACHINE Jupyter_LibraryMeta
DEFINITIONS "LibraryMeta.def"
END

PROB_INFO_STR("prob-version")

PROB_INFO_STR("prob-revision")

PROB_INFO_STR("prob-last-changed-date")

1

1

1
2
3
4

1

1

1

In [69]:

In [70]:

In [71]:

Another command is PROB_INFO_STR("parser-version") which does not work within Jupyter.

PROB_STATISTICS
This external function provides access to various statistics in the form of integers about ProB.
Type: .STRING → INTEGER

In [72]:

In [73]:

In [74]:

In [75]:

In [76]:

In [77]:

In [78]:

In [79]:

Out[69]: "1.8.0_172-b11"

Out[70]: "/Library/Java/JavaVirtualMachines/jdk1.8.0_172.jdk/Contents/Home/bin/
java"

Out[71]: "13/8/2018 - 14h34 49s"

Out[72]: 150940944

Out[73]: 1

Out[74]: 0

Out[75]: 0

Out[76]: −1

Out[77]: 1534163689

Out[78]: 1660

Out[79]: 2890

PROB_INFO_STR("java-version")

PROB_INFO_STR("java-command-path")

PROB_INFO_STR("current-time")

PROB_STATISTICS("prolog-memory-bytes-used")

PROB_STATISTICS("states")

PROB_STATISTICS("transitions")

PROB_STATISTICS("processed-states")

PROB_STATISTICS("current-state-id")

PROB_STATISTICS("now-timestamp")

PROB_STATISTICS("prolog-runtime")

PROB_STATISTICS("prolog-walltime")

1

1

1

1

1

1

1

1

1

1

1

Other possible information fields are prolog-memory-bytes-free, prolog-global-stack-bytes-
used, prolog-local-stack-bytes-used, prolog-global-stack-bytes-free, prolog-local-stack-bytes-
free, prolog-trail-bytes-used, prolog-choice-bytes-used, prolog-atoms-bytes-used, prolog-
atoms-nb-used, prolog-gc-count, prolog-gc-time.

PROJECT_STATISTICS
This external function provides access to various statistics in the form of integers about the
current specification being processed, with all auxiliary files (i.e., project). Type:

.STRING → INTEGER

In [80]:

In [81]:

In [82]:

In [83]:

In [84]:

In [85]:

In [86]:

PROJECT_INFO
This external function provides access to various information strings about the current
specification being processed, with all auxiliary files (i.e., project). Type:

.STRING → POW(STRING)

In [87]:

Out[80]: 0

Out[81]: 0

Out[82]: 0

Out[83]: 0

Out[84]: 0

Out[85]: 0

Out[86]: 0

Out[87]: {"(machine from Jupyter cell).mch","LibraryMeta.def"}

PROJECT_STATISTICS("constants")

PROJECT_STATISTICS("variables")

PROJECT_STATISTICS("properties")

PROJECT_STATISTICS("invariants")

PROJECT_STATISTICS("operations")

PROJECT_STATISTICS("static_assertions")

PROJECT_STATISTICS("dynamic_assertions")

PROJECT_INFO("files")

1

1

1

1

1

1

1

1

In [88]:

In [89]:

In [90]:

In [91]:

In [92]:

In [93]:

In [94]:

In [2]:

MACHINE_INFO
This external function provides access to various information strings about B machines being
processed. Type: .STRING → STRING

In [10]:

LibraryIO
This library provides various input/output facilities. It is probably most useful for debugging, but
can also be used to write B machines which can read and write data. You can obtain the
definitions below by putting the following into your DEFINITIONS clause:

DEFINITIONS "LibraryIO.def"

The file LibraryIO.def is also bundled with ProB and can be found in the stdlib folder.

Out[88]: {"(machine from Jupyter cell).mch"}

Out[89]: ∅

Out[90]: ∅

Out[91]: ∅

Out[92]: ∅

Out[93]: ∅

Out[94]: ∅

Out[2]: {"5d45f08d7e5cf22716b8fd3dd54a29b4ba4c443c"}

Out[10]: "abstract_machine"

PROJECT_INFO("main-file")

PROJECT_INFO("variables")

PROJECT_INFO("constants")

PROJECT_INFO("sets")

PROJECT_INFO("operations")

PROJECT_INFO("assertion_labels")

PROJECT_INFO("invariant_labels")

PROJECT_INFO("sha-hash")

MACHINE_INFO("Jupyter_LibraryMeta","TYPE")

1

1

1

1

1

1

1

1

1

LibraryXML
This library provides various functions to read and write XML data from file and strings. You can
obtain the definitions below by putting the following into your DEFINITIONS clause:

DEFINITIONS "LibraryXML.def"

The file LibraryXML.def is also bundled with ProB and can be found in the stdlib folder.

Internal Data Type
An XML document is represented using the type seq(XML_ELement_Type), i.e., a sequence of
XML elements, whose type is defined by the following (included in the LibraryXML.def file):

 XML_ELement_Type ==
 struct(
 recId: NATURAL1,
 pId:NATURAL,
 element:STRING,
 attributes: STRING +-> STRING,
 meta: STRING +-> STRING
);

Files and Strings
XML documents can either be stored in a file or in a B string.

In [1]:

READ_XML_FROM_STRING
This external function takes an XML document string and converts into into the B format
seq(XML_ELement_Type)}. Note that all strings in ProB are encoded using UTF-8, so no
encoding argument has to be provided.

In [2]:

Out[1]: Loaded machine: Jupyter_LibraryXML

Out[2]: {(1↦rec(attributes∈{("version"↦"0.1")},element∈"Data",meta∈{("xmlLine
Number"↦"3")},pId∈0,recId∈1)),(2↦rec(attributes∈{("attr1"↦"value1"),(
"elemID"↦"ID1")},element∈"Tag1",meta∈{("xmlLineNumber"↦"4")},pId∈1,re
cId∈2))}

::load
MACHINE Jupyter_LibraryXML
DEFINITIONS "LibraryXML.def"
END

READ_XML_FROM_STRING('''
<?xml version="1.0" encoding="ASCII"?>
 <Data version= "0.1">
 <Tag1 elemID="ID1" attr1="value1" />
 </Data>
''')

1
2
3
4

1
2
3
4
5
6

READ_XML
This external function can read in an XML document from file. In contrast to
READ_XML_FROM_STRING it also takes a second argument specifying the encoding used.
ProB cannot as of now detect the encoding from the XML header. In future this argument may
be removed. Currently it can take these values: "auto","ISO-8859-1","ISO-8859-2","ISO-8859-
15", "UTF-8","UTF-16","UTF-16LE","UTF-16BE","UTF-32","UTF-32LE","UTF-32BE",
"ANSI_X3.4-1968", "windows 1252".

LibraryHash
This library provides various facilities to compute hash values for B values. You can obtain the
definitions below by putting the following into your DEFINITIONS clause:

DEFINITIONS "LibraryHash.def"

The file LibraryHash.def is also bundled with ProB and can be found in the stdlib
folder.

In [15]:

HASH
This external function converts a B data value to an integer hash value. It uses the
term_hash predicate of SICStus Prolog. It will generate an integer that can be efficiently

handled by ProB, but may generate collisions.

Type: .τ → INTEGER

In [16]:

In [17]:

In [20]:

Out[15]: Loaded machine: Jupyter_LibraryHash

Out[16]: 92915201

Out[17]: 191034877

Out[20]: FALSE

::load
MACHINE Jupyter_LibraryHash
DEFINITIONS "LibraryHash.def"
END

HASH({1,2,4})

HASH({1,2,5})

i<: 1..7 & j<:1..7 & i /= j & HASH(i)=HASH(j)

1
2
3
4

1

1

1

SHA_HASH
This external function converts a B data value to a SHA hash value represented as a sequence
of bytes. It is unlikely to generate a collision.

Type: .τ → INTEGER

In [21]:

In [22]:

In [23]:

SHA_HASH_HEX
This external function converts a B data value to a SHA hash value represented as a
hexadecimal string. It is unlikely to generate a collision.

Type: .τ → STRING

In [24]:

In [25]:

In [26]:

In [27]:

In [28]:

In []:

Out[21]: [37,168,75,91,175,1,8,58,13,207,7,42,222,208,212,29,243,31,27,154]

Out[22]: [149,81,45,24,177,25,74,30,204,7,143,202,136,116,148,247,6,221,245,52]

Out[23]: FALSE

Out[24]: "25a84b5baf01083a0dcf072aded0d41df31f1b9a"

Out[25]: "95512d18b1194a1ecc078fca887494f706ddf534"

Out[26]: "6bd1d8beefa14ea131285d11bbf8580c5f31fe78"

Out[27]: "068948b4d423a0db5fd1574edad799005fc456e0"

Out[28]: "55b9c89f79362578c3641774db978b5455be5bfd"

SHA_HASH({1,2,4})

SHA_HASH({1,2,5})

i<: 1..7 & j<:1..7 & i /= j & SHA_HASH(i)=SHA_HASH(j)

SHA_HASH_HEX({1,2,4})

SHA_HASH_HEX({1,2,5})

SHA_HASH_HEX({x|x<:1..8 & card(x)=2})

SHA_HASH_HEX(0)

SHA_HASH_HEX(SHA_HASH_HEX(0))

1

1

1

1

1

1

1

1

1

