
ProB Latex Commands

Michael Leuschel

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf

{michael.leuschel}@hhu.de

1 Overview

ProB can be used to process Latex files, i.e., ProB scans a given Latex file and
replaces certain commands by processed results.

Usage A typical usage would be as follows:

probcli FILE -init -latex Raw.tex Final.tex

Note: the FILE and -init commands are optional; they are required in case
you want to process the commands in the context of a certain model. Currently
the ProB Latex commands mainly support B and Event-B models, TLA+ and
Z models can also be processed but all commands below expect B syntax. You
can add more commands if you wish, e.g., set preferences using -p PREF VAL or
run model checking --model-check. The Latex processing will take place after
most other commands, such as model checking.

You will probably want to put the probcli call into a Makefile, in particular
when you want to generate dot graphics using ProB(see below). This file was
generated by putting the following into the Makefile:

prob_latex_doc.tex: prob_latex_doc_raw.tex

probcli -latex prob_latex_doc_raw.tex prob_latex_doc.tex

Applications

– model documentation: generate a documentation for a formal model, that
is guaranteed to be up-to-date and shows the reader how to operate on the
model.

– worksheets for particular tasks: for certain tasks the Latex document can
replace a formal model, the model is built-up by Latex commands and the
results shown in the final Latex output. This is probably most appropriate
for smaller, isolated mathematical problems in teaching.

– validation reports for model checking or assertion checking results,
– coverage reports for test-case generation,
– as a help to debug a model, and extract information about a model for

inspection,

– funding proposals with a B modelling of workpackages, tasks and partners,

– documentation of ProB’s features (such as this latex package, ProB’s
external functions, etc.),

– and hopefully many more.

2 ProB Latex Commands

2.1 General Aspects

Currently every ProB Latex command has to be put onto a single line. In
future this may be relaxed. Every command has the following form:

\probCMD{ARG}{Opt1}...{Optn}

The arguments Opt1 to Optn are optional.

If you add dummy Latex command definitions for the ProB commands you
can use Latex to process the original, raw Latex file without running ProB,
e.g., to check for errors and general layout. E.g., for the first command presented
below you could write:

\newcommand{\probexpr}[1]{#1}

Also, ProB commands are not replaced within line comments starting with
%. However, ProB commands are processed within block comments (started by
\begin{comment}).

2.2 Evaluating Expressions

The \probexpr command takes a B expression as argument and evaluates it. By
default it shows the B expression and the value of the expression.

Here are a few examples:

– \probexpr{{1}\/{2**10}} in the raw Latex file will yield:
{1} ∪ {210} = {1, 1024}

– \probexpr{{1}\/{2**10}}{ascii} instructs ProB to use the B ASCII
syntax:
{1} \/ {2 ** 10} = {1,1024}

– \probexpr{{1}\/{2**10}}{value} means that only the value will be dis-
played:
{1, 1024}

– \probexpr{"B-String"}{value}{string} means that for string results the
B quotes are removed:
B-String

2.3 Executing REPL commands

The \probrepl command takes a REPL command and executes it. By default it
shows only the output of the execution, e.g., in case it is a predicate TRUE or
FALSE.

Here are a few examples:

– \probrepl{2**10>1000} in the raw Latex file will yield:
TRUE

– \probrepl{let DOM = 1..3} outputs a value and will define the variable
DOM for the remainder of the Latex run1:
{1, 2, 3}

– there is a special form for the let command: \problet{DOM}{1..3}, it has
the same effect as the command above, but also prints out the let predicate
itself:
let DOM = 1..3 {1, 2, 3}

– \probrepl{a:(DOM * DOM)-->DOM} uses the above variable DOM:
TRUE

– \probrepl{f:DOM >-> DOM}{solution}{time} shows the solution of a pre-
dicate and solving time:
f = {(1 7→ 3), (2 7→ 2), (3 7→ 1)} (20ms)

2.4 Generating Latex Tables

The \probtable command takes a B expression as argument, evaluates it and
shows it as a table. Valid options are no-headings, no-tabular, no-hline,
no-row-numbers as well as max-table-size=N where N is a number.

Here are a few examples:

– \probtable{{(1,2)|->3,(4,5)|->9}} in the raw Latex file will yield:

Nr prj11 prj12 prj2
1 1 2 3
2 4 5 9

– \probtable{a:((1..2) * BOOL)-->>DOM}{no-row-numbers} yields:

prj11 prj12 prj2
1 FALSE 1
1 TRUE 1
2 FALSE 2
2 TRUE 3

– \probtable{a:((1..2) * BOOL)-->>DOM}{no-headings}{no-tabular}{no-row-numbers}

means we have to provide ourselves the tabular environment and can set it
up and format it accordingly:

1 Unless it is removed using :unlet DOM

Idx Truth Range
1 FALSE 1
1 TRUE 1
2 FALSE 2
2 TRUE 3

2.5 Generating Dot Graphics

The \probdot command takes a B expression or predicate as argument, evaluates
it and translates it into a dot graphic. It takes either one or two additional file
arguments. The first additional argument is always the name/path of the genera-
ted dot file. The second optional argument is the name/path of the generated
pdf file, it will be generated using the dot command. You can give ProB the
path to the dot command at startup using the DOT preference, e.g., using:

probcli -latex Raw.tex Final.tex -p DOT /usr/local/bin/dot

When the second additional argument is missing, you need to generate the
PDF yourself, e.g., using sfdp in the Makefile. Note, you can also provide as
third optional argument sfdp, in which case ProB will call sfdp directly for you.
You may have to provide the path to sfdp using the preference SFDP.

Here are an few examples:

– \probdot{bij:DOM>->>DOM & !x.(x:DOM=>bij(x)/=x)}{figures/bij.dot}{figures/bij.pdf}

generates the file bij.pdf. It then can be included using the command
includegraphics, see Figure 1.

– \probdot{a={TRUE}*(1..10) & s=%x.(x:1..3|x*x)}{figures/ab.dot} ge-
nerates the file ab.dot. In the associated Makefile we use sfdp to generate
the graphic included in Figure 2. (We could have used the command:
\probdot{a={TRUE}*(1..10) & s=%x.(x:1..3|x*x)}{figures/ab.dot} {figures/ab.pdf}{sfdp}

instead; the Makefile gives us more control, e.g., to set options of sfdp.) The
example also shows how to display two relations/graphs in one figure.

The Makefile for Figure 2 contains:

figures/ab.pdf: figures/ab.dot

$(SFDP) -Tpdf figures/ab.dot > figures/ab.pdf

2.6 Pretty Printing Formulas

The \probprint command takes an expression or predicate and pretty prints it.
Some symbols require the bsymb.sty package to be imported using \usepackage{bsymb}.
If the formula is a predicate the second argument should be pred.

– \probprint{bool({1}<|{1|->2,2|->3}|>>{4}:NATURAL+->INTEGER)} yields:
bool(({1}C {(1 7→ 2), (2 7→ 3)})B− {4} ∈ N 7→ Z)

– \probprint{2>1 & 3-2=1}{pred} yields:
2 > 1 ∧ 3− 2 = 1

3

1

bij

2

bij

bij

Abb. 1. Illustrating a bijection

3

9

s

2

4

s

1 s

TRUE

a

a

a

a

a

10

a

8

a

7

a

6

a

5

a

Abb. 2. Illustrating two graphs in a figure

2.7 Conditional

The \probif command takes an expression or predicate and two Latex texts. If
the expression evaluates to TRUE the first branch is processed, otherwise the
other one is processed.

Here are a few examples:

– \probif{2**10>1000}{\top}{\bot} in the raw Latex file will yield:

>
– \probif{bool(2**10<1000)}{\top}{\bot} in the raw Latex file will

yield:

⊥

2.8 Repetition

The \probfor command takes an identifier, a set expression and a Latex text,
and processes the Latex text for every element of the set expression, setting the
identifier to a value of the set.

For example, below we embed the command:
\probfor{ii}{1..5}{ \item the square of \probexpr{ii} is \probexpr{ii*ii} }

within an itemize environment to generate a list of entries:

– the square of ii = 1 is ii * ii = 1

– the square of ii = 2 is ii * ii = 4

– the square of ii = 3 is ii * ii = 9

– the square of ii = 4 is ii * ii = 16

– the square of ii = 5 is ii * ii = 25

3 Examples

3.1 Visualising all bijections

In Figure 3 we show all 6 bijections for DOM = {1, 2, 3} to itself. We have
used the command \probrepl{let bijs = SORT(DOM >->>DOM)} to compute
all bijections and sort them into a sequence (using the external function SORT).
This command is in a comment block, so its output does not appear in the Latex
file. We then use one \probfor{ii}{dom(bijs)}{...} to generate the PDFs
and one to include the graphics in the figure. The Latex code does not know how
many bijections there are.

Indeed, we can use very similar commands to generate in Figure 4 we show
all 2 bijections between 1..2 and BOOL.

3 result 2

1

resultresult

3

2

result

1

result

result

3 result 2 result 1 result

3

1

resultresult

2 result

3

2

resultresult

1 result

3

1

result

2

result

result

Abb. 3. Illustrating all bijections from DOM = {1, 2, 3} to itself

2

TRUE

result

1

FALSE

result

2

FALSE

result

1

TRUE

result

Abb. 4. Illustrating all bijections between 1..2 and BOOL

3.2 N-Queens

Let us solve the N-Queens problem for n=8. For this we use \probrepl to solve the
predicate ∃queens.(queens ∈ 1..n�1..n∧∀(q1, q2).((q1 ∈ 1..n∧q2 ∈ 2..n)∧q2 >
q1⇒ queens(q1)+(q2−q1) 6= queens(q2)∧queens(q1)+(q1−q2) 6= queens(q2))).
We use the optional argument {store} to store the found value of queens (similar
to a let). We then set up a tabular environment in which we next two \probfor
commands (one for the rows and then one for the columns), with a \probif to
generate the symbol \WhiteQueenOnWhite from the skak package whenever a
queen is at the present position.

Q
Q

Q
Q

Q
Q

Q
Q

3.3 Primes

Using a similar scheme as used to display the N-Queens solution, we can visualise
the prime numbers up to 99:

2 3 5 7
11 13 17 19

23 29
31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

4 Version and Configuration Information

4.1 Version Information

Using external functions you can obtain various information which can be useful
to include in the generated Latex files. For example, this document was generated
using ProB version 1.6.1− beta3. Here are the external functions used for this
Latex file, they can be found in the machine ProBLatex.mch and in the imported
files in ProB’s stdlib folder (e.g., LibraryMeta.def).

DEFINITIONS

"LibraryMeta.def";

EXTERNAL_FUNCTION_SORT(X) == POW(X) --> POW(INTEGER*X);

SORT(x) == [];

The SORT function was used above in Section 3.1. Using the PROB INFO STR

external function we can gather the following information about ProB (the
prolog-version information is not shown):

Nr Flag StringV alue
1 “current-time” “7/9/2016 - 13h40 38s”
2 “java-command-path” “/usr/bin/java”
3 “java-version” “1.8.0 73-b02”
4 “parser-version” “2016-06-17 13:04:11.769”
5 “prob-last-changed-date” “Wed Sep 7 09:35:42 2016 +0200”
6 “prob-revision” “d03d3d7b42c45ccd2dfb66e880979efa5f614330”
7 “prob-version” “1.6.1-beta3”
Using the PROB INFO INT external function we can gather the following infor-

mation about ProB and its current state:
Nr Flag IntV alue
1 “current-state-id” 5
2 “now-timestamp” 1473248438
3 “processed-states” 6
4 “prolog-atoms-bytes-used” 1554983
5 “prolog-atoms-nb-used” 29466
6 “prolog-choice-bytes-used” 1296
7 “prolog-gc-count” 0
8 “prolog-gc-time” 0
9 “prolog-global-stack-bytes-used” 10493728
10 “prolog-local-stack-bytes-used” 1320
11 “prolog-memory-bytes-free” 8347472
12 “prolog-memory-bytes-used” 148938736
13 “prolog-runtime” 1800
14 “prolog-trail-bytes-used” 244560
15 “prolog-walltime” 6160
16 “states” 7
17 “transitions” 6

4.2 Model Information

Using the PROJECT INFO external function we can gather information about the
B project (the absolute-files information is not shown):

Nr Flag V alue
1 “assertion labels” {“thm1”, “thm2”}
2 “constants” ∅
3 “files” {“LibraryMeta.def”, “ProBLatex.mch”}
4 “invariant labels” {“inv0”, “inv1”, “inv2”}
5 “main-file” {“ProBLatex.mch”}
6 “operations” {“Inc”}
7 “sets” ∅
8 “variables” {“x”}

4.3 Preferences

Using the GET PREF and GET PREF DEFAULT external function we can gather
information about preferences and, e.g., display the non-default preferences:

Nr Preference V alue
1 “DOT” “/usr/local/bin/dot”
2 “REPL CACHE PARSING” “true”

4.4 History

Using the STATE AS STRING and HISTORY external function we can gather infor-
mation about the current history (e.g., can be used to display a counter-example
after model checking).

Step ID State
1 0 “(x=1)”
2 1 “(x=2)”
3 2 “(x=3)”
4 3 “(x=4)”
5 4 “(x=5)”

Using the STATE SUCC external predicate we can also inspect the entire state
space:

ID SuccID
−1 0
0 1
1 2
2 3
3 4
4 5

4.5 Status of Assertions, Invariants, etc.

Using the FORMULA INFOS and FORMULA VALUES external function we can gather
information about invariants, guards and assertions (actually everything that is
displayed in the ProB evaluation view):

1 / ∗@thm1 ∗ /210 = 1024
TRUE

2 / ∗@thm2 ∗ /Σ(a).(a ∈ 1..100|a) = 5050
TRUE

Here are the invariants and their status:

1 / ∗@inv0 ∗ /x ∈ N
TRUE

2 / ∗@inv1 ∗ /union({λ′|∃a.(a ⊆ 1..3 ∧ λ′ = a)}) = 1..3
TRUE

3 / ∗@inv2 ∗ /inter({λ′|∃a.(a ⊆ 1..3 ∧ λ′ = a)}) = ∅
TRUE

5 Issues and to do’s

The Latex interface is still evolving, commands and command format may change.
The same is true for the relevant external functions.

– Error handling could be improved (check all arguments valid; try and make
raw Latex be valid),

– refactor eval codes and eval strings in general
– check performance of parsing via Java (seems to take 10-20 ms per parsing

call), we now cache parse results,
– add probinclude command; can be used e.g. for graphical visualisation of

history,
– more external functions (setStateID,...), maybe more or less complete reificati-

on of interface, repl and tk and prob2 interface commands ideally implemented
via external function ?

– the rendering of strings is not yet optimal.

