
Constraint Programming Puzzles in B

Michael Leuschel

September 2016

1 / 32

Introduction

• ProB can be used to process Latex files, i.e., ProB scans a
given Latex file and replaces certain commands (such as
\probexpr) by processed results.

• the following slides were generated (on 25/10/2016− 7h465s)
this way using ProB version 1.6.1− rc
(WedOct1910 : 53 : 282016 + 0200) and the command:
probcli -latex presentation_raw.tex presentation.tex

2 / 32

\probexpr

The \probexpr command takes a B expression as argument and
evaluates it. By default it shows the B expression and the value of
the expression.

• \probexpr{{1}\/{2**100}} in the raw Latex file will yield:
{1} ∪ {2100} = {1, 1267650600228229401496703205376}

• \probexpr{{1}\/{2**10}}{ascii} instructs ProB to use
the B ASCII syntax:
{1} \/ {2 ** 10} = {1,1024}

3 / 32

\probrepl

The \probrepl command takes a REPL command and executes it.
By default it shows only the output of the execution, e.g., in case it
is a predicate TRUE or FALSE.

• \probrepl{2**10>1000} in the raw Latex file will yield:
TRUE

• \probrepl{let DOM = 1..3} outputs a value and will define
the variable DOM for the remainder of the Latex run:
{1, 2, 3}

• \probrepl{f:DOM >-> DOM}{solution}{time} shows the
solution of a predicate and solving time:
f = {(1 7→ 3), (2 7→ 2), (3 7→ 1)} (0ms)

4 / 32

Other ProB Latex Commands

• \probtable show an expression (usually a relation) as a Latex
table

• \probdot show an expression (again, usually a relation) as a
Dot graph

• \probprint just pretty-print a formula
• \probif{Test}{Then}{Else} a conditional, evaluating a
predicate or boolean expression

• \probfor{ID}{Set}{Body} iteration

5 / 32

Overview

• We now show that some constraint problems can be encoded
very easily in B

• However, solving constraints in a language such as B is often
considered “too difficult”

• These examples show that some examples at least can be
solved by ProB

• Long term of goal of research on ProB: make B suitable as a
high-level constraint modelling language

6 / 32

Graph Coloring
• Let us first define a directed graph gr =
{(1 7→ 3), (2 7→ 4), (3 7→ 5)}

• We want to color this graph using cols = {red , green}
• We simply set up a total function from nodes to cols and
require that neighbours in gr have a different colour:

• Solution found by ProB for ∃col .(col ∈
1..5→ cols ∧ ∀(x , y).(x 7→ y ∈ gr ⇒ col(x) 6= col(y))):

COLOURS

5

green

col

4

red

col

3

gr

col

2

col

gr

1

col

gr

7 / 32

Graph Isomorphism
• Let us define two directed graphs g1 =
{(v1 7→ v2), (v1 7→ v3), (v2 7→ v3)} and g2 =
{(n1 7→ n2), (n3 7→ n1), (n3 7→ n2)}

• We can check g1 and g2 for isomporhism by trying to find a
solution for: ∃iso.(iso ∈ V �� N ∧ ∀v .(v ∈ V ⇒
iso[g1 [{v}]] = g2 [iso[{v}]])).

• ProB has found a solution, which is shown below:

V

N

v3

n2

iso

v2

g1

n1

iso

g2

v1

g1

g1

n3

iso

g2

g2

8 / 32

Subset Sum Example (from Peter Stuckey)

• Problem:
“Find 4 different integers between 1 and 5 that sum to 14”

• B Formulation:
∃S .(S ⊆ 1..5 ∧ card(S) = 4 ∧ Σ(z).(z ∈ S |z) = 14)

• one solution found by ProB: S = {2, 3, 4, 5}
• all solutions found by ProB:
{S |S ⊆ 1..5 ∧ card(S) = 4 ∧ Σ(z).(z ∈ S |z) = 14} =
{{2, 3, 4, 5}} (0ms)

• Note: in another language: [W,X,Y,Z] :: 1..5,
all_different([W,X,Y,Z]), W+X+Y+Z #=14,
labeling([X,Y,Z,W])

9 / 32

Coins Puzzle

• We have various bags each containing coins of different values
coins = {16, 17, 23, 24, 39, 40}.

• Puzzle: In total 100 coins are stolen; how many bags are stolen
for each coin value?

• one solution found by ProB: stolen = {(16 7→ 2), (17 7→
4), (23 7→ 0), (24 7→ 0), (39 7→ 0), (40 7→ 0)}

• all solutions found by ProB:
{s|s ∈ coins → N ∧ Σ(x).(x ∈ coins|x ∗ s(x)) = 100} =
{{(16 7→ 2), (17 7→ 4), (23 7→ 0), (24 7→ 0), (39 7→ 0), (40 7→
0)}} (0ms)

• Observe: coins is not bounded

10 / 32

N-Queens (1)

• Place n queens on a n × n chessboard so that no two queens
attack each other

• We solve the puzzle for n=6.
• First, we place one queen on each row and column by using a
total injection constraint: ∃queens.(queens ∈ 1..n� 1..n).

0 0 0 0 0 Q
0 0 0 0 Q 0
0 0 0 Q 0 0
0 0 Q 0 0 0
0 Q 0 0 0 0
Q 0 0 0 0 0

11 / 32

N-Queens (2)
• We now ensure that queens cannot take each other on
diagonals: queens ∈ 1..n� 1..n ∧ ∀(q1 , q2).(q1 ∈ 1..n ∧ q2 ∈
2..n ∧ q2 > q1 ⇒ queens(q1) + (q2 − q1) 6=
queens(q2) ∧ queens(q1) + (q1 − q2) 6= queens(q2)).

• Shown below is a solution found by ProB
queens = {(1 7→ 5), (2 7→ 3), (3 7→ 1), (4 7→ 6), (5 7→ 4), (6 7→
2)} (0ms)

0 0 0 0 Q 0
0 0 Q 0 0 0
Q 0 0 0 0 0
0 0 0 0 0 Q
0 0 0 Q 0 0
0 Q 0 0 0 0

12 / 32

N-Queens (3)
For n=17 (20ms) we get:

0Z0Z0Z0Z0Z0ZQZ0Z0
Z0Z0Z0ZQZ0Z0Z0Z0Z
0Z0Z0Z0Z0L0Z0Z0Z0
Z0Z0Z0Z0Z0Z0Z0Z0L
0Z0Z0L0Z0Z0Z0Z0Z0
Z0Z0Z0Z0L0Z0Z0Z0Z
0L0Z0Z0Z0Z0Z0Z0Z0
Z0Z0Z0Z0Z0Z0Z0ZQZ
0Z0Z0Z0Z0Z0Z0L0Z0
Z0Z0Z0L0Z0Z0Z0Z0Z
0Z0Z0Z0Z0ZQZ0Z0Z0
Z0ZQZ0Z0Z0Z0Z0Z0Z
0Z0Z0Z0Z0Z0Z0ZQZ0
Z0Z0Z0Z0Z0ZQZ0Z0Z
0Z0ZQZ0Z0Z0Z0Z0Z0
Z0L0Z0Z0Z0Z0Z0Z0Z
QZ0Z0Z0Z0Z0Z0Z0Z0

13 / 32

Golomb Ruler

• A Golomb ruler with n = 7 marks of length len = 25 has the
property that all distances between distinct marks are different

• The following expresses the problem in B:
∃a.(a ∈ 1..n→ 0..len ∧ ∀i .(i ∈ 2..n⇒ a(i − 1) < a(i)) ∧ ∀(i1 , j1 , i2 , j2).(i1 >

0 ∧ i2 > 0 ∧ j1 ≤ n ∧ j2 ≤ n ∧ i1 < j1 ∧ i2 < j2 ∧ (i1 7→ j1) 6= (i2 7→ j2)⇒
a(j1)− a(i1) 6= a(j2)− a(i2)))

• A solution found by ProB is shown graphically below
a = {(1 7→ 0), (2 7→ 2), (3 7→ 6), (4 7→ 9), (5 7→ 14), (6 7→ 24), (7 7→
25)} (80ms)

14 / 32

Validation of Golomb Ruler result

We can compute the (n ∗ (n − 1))/2 = 21 distances:
Nr i j delta
1 1 2 2
2 1 3 6
3 1 4 9
4 1 5 14
5 1 6 24
6 1 7 25
7 2 3 4
8 2 4 7
9 2 5 12
10 2 6 22
11 2 7 23
12 3 4 3
13 3 5 8
14 3 6 18
15 3 7 19
16 4 5 5
17 4 6 15
18 4 7 16
19 5 6 10
20 5 7 11
21 6 7 1

15 / 32

Latin Squares
• Let us construct a latin square of order 6 using indices in
{1,2,3,4,5,6}.

• We want to construct a square
∃sol .(sol ∈ idx × idx → idx ∧ ∀(i , j1 , j2).(i ∈ idx ∧ j1 ∈
idx ∧ j2 ∈ idx ∧ j1 > j2 ⇒ sol(i 7→ j1) 6= sol(i 7→
j2) ∧ sol(j1 7→ i) 6= sol(j2 7→ i)))

• A solution is shown below (20 ms):

3 1 2 4 5 6
2 3 1 6 4 5
1 6 5 2 3 4
4 2 6 5 1 3
5 4 3 1 6 2
6 5 4 3 2 1

16 / 32

Sudoku (1)

• We define the domain: let DOM = 1..9
• We now compute the pairs of positions on columns that need
to be different: let Diff1 = {x1 , x2 , y1 , y2 |y1 ∈ DOM ∧ y2 ∈
DOM ∧ x1 ∈ DOM ∧ x2 ∈ DOM ∧ x1 < x2 ∧ y1 = y2}; this gives
rise to card(Diff1) = 324 pairs of positions

• Now the same for rows:
let Diff2 = {x1 , x2 , y1 , y2 |y1 ∈ DOM ∧ y2 ∈ DOM ∧ x1 ∈
DOM ∧ x2 ∈ DOM ∧ x1 = x2 ∧ y1 < y2}

17 / 32

Sudoku (2)

• A solution to ∃Board .(Board ∈
DOM → (DOM → DOM) ∧ ∀(x1 , x2 , y1 , y2).(x1 7→ x2 7→ y1 7→
y2 ∈ Diff1 ∪ Diff2 ⇒ Board(x1)(y1) 6= Board(x2)(y2))) TRUE

is shown below.
• This does not yet take into account the all different constraint
on the subsquares: let Sub = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}

2 5 4 1 3 6 7 8 9
1 4 2 3 6 5 9 7 8
4 9 3 2 1 8 5 6 7
3 1 8 7 9 2 4 5 6
6 3 9 8 7 1 2 4 5
5 2 1 9 8 7 6 3 4
7 6 5 4 2 9 8 1 3
8 7 6 5 4 3 1 9 2
9 8 7 6 5 4 3 2 1

18 / 32

Sudoku (3)
• We now compute the pairs of positions that need to be
different within each subsquare:
let Diff3 = {x1 , x2 , y1 , y2 |x1 ≥ x2 ∧ (x1 = x2 ⇒ y1 >
y2) ∧ (x1 7→ y1) 6= (x2 7→ y2) ∧ ∃(s1 , s2).(s1 ∈ Sub ∧ s2 ∈
Sub ∧ x1 ∈ s1 ∧ x2 ∈ s1 ∧ y1 ∈ s2 ∧ y2 ∈ s2)}

• We combine all position pairs: let Diff = Diff1 ∪ Diff2 ∪ Diff3
• A solution to ∃Board .(Board ∈

DOM → (DOM → DOM) ∧ ∀(x1 , x2 , y1 , y2).(x1 7→ x2 7→ y1 7→
y2 ∈ Diff ⇒ Board(x1)(y1) 6= Board(x2)(y2))) TRUE (50ms)

is below:
2 7 5 1 4 3 8 6 9
1 3 6 7 9 8 2 4 5
8 4 9 5 6 2 7 1 3
7 1 2 8 3 5 4 9 6
4 6 3 2 1 9 5 7 8
5 9 8 4 7 6 1 3 2
6 5 4 3 2 1 9 8 7
3 2 1 9 8 7 6 5 4
9 8 7 6 5 4 3 2 1

19 / 32

External Data Sources (1)
• ProB can read in XML and CSV files using external functions
• Let us read a CSV file containing data about chemical
elements: let data = READ_CSV_STRINGS(“elementdata.csv”)

• The data is of type seq(STRING 7→ STRING) and contains
size(data) = 118 entries.

• The first entry is data(1) = {(“Atomic_Number” 7→ “1”), (“Atomic_Radius” 7→

“79”), (“Atomic_Weight” 7→ “1.00794”), (“Boiling_Point” 7→ “20.28”), (“Covalent_Radius” 7→

“32”), (“Density” 7→ “0.0708 (@ -253degC)”), (“Electronic_Configuration” 7→

“1s¹”), (“First_Ionisation_Energy” 7→ “1311.3”), (“Heat_Evaporation” 7→

“0.904 (H-H)”), (“Heat_Fusion” 7→ “0.117 (H-H)”), (“Lattice” 7→

“HEX”), (“Lattice_Constant” 7→ “3.75”), (“Melting_Point” 7→ “14.01”), (“Name” 7→

“Hydrogen”), (“Oxidation_States” 7→ “1 -1”), (“Pauling_Electronegativity” 7→

“2.2”), (“Specific_Heat” 7→ “14.267 (H-H)”), (“Specific_Volume” 7→ “14.1”), (“Symbol” 7→

“H”), (“Thermal_Conductivity” 7→ “0.1815”)}

• Note that the read function is generic: it works for any CSV
file; empty cells lead to undefined fields

20 / 32

External Data Sources (2)
• We can determine the atomic elements with one letter symbols
using the expression
{i , nm|data(i)(“Symbol”) = nm ∧ STRING_LENGTH(nm) = 1};
the result is shown below (including the element’s name):

i s nm
1 “H” “Hydrogen”
5 “B” “Boron”
6 “C” “Carbon”
7 “N” “Nitrogen”
8 “O” “Oxygen”
9 “F” “Fluorine”
15 “P” “Phosphorus”
16 “S” “Sulfur”
19 “K” “Potassium”
23 “V” “Vanadium”
39 “Y” “Yttrium”
53 “I” “Iodine”
74 “W” “Tungsten”
92 “U” “Uranium”

21 / 32

Data Validation (1)

Data validation is one area where B’s expressivity is very useful:
• We can check that the index corresponds to the atomic
number: ∀i .(i ∈ dom(data)⇒ i =
STRING_TO_INT (data(i)(“Atomic_Number”))) TRUE

• It is often useful to define auxiliary functions: let aw = λi .(i ∈
dom(data)|DEC_STRING_TO_INT (data(i)(“Atomic_Weight”), 4));
for example aw(1) = 10079.

• Here, B is used almost like a functional programming language

22 / 32

Data Validation (2)

• we can see that aw is not defined for all entries:
dom(data)− dom(aw) =

{104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118}, e.g.,
for i = 104 ∧ name = “Rutherfordium”

• We can check if the atomic weights are ordered:
∀(i , j).(i ∈ dom(aw) ∧ j ∈ dom(aw) ∧ i < j ⇒ aw(i) ≤
aw(j)) FALSE

• One counter example is
i = 18 ∧ j = 19 ∧ awi = 399480 ∧ awj = 390983 ∧ namei =
“Argon” ∧ namej = “Potassium”

23 / 32

Data Validation (3)

• All counter examples are shown in the table below
• From chemistry.about.com, “... it seems intuitively obvious

that increasing the number of protons would increase the atomic
mass. However, ...you will see that cobalt (atomic number 27) is
more massive than nickel (atomic number 28). Uranium (number
92) is more massive than neptunium (number 93).”

Element1 aw1 Element2 aw2
“Argon” “39.948” “Potassium” “39.0983”
“Cobalt” “58.9332” “Nickel” “58.6934”
“Plutonium” “244.0642” “Americium” “243.0614”
“Tellurium” “127.6” “Iodine” “126.90447”
“Thorium” “232.0381” “Protactinium” “231.03588”
“Uranium” “238.0289” “Neptunium” “237.048”

24 / 32

Visualization (1)
Visualise the first 50 elements and show which symbol names share
a common character:

"Zn"

"Zr"

sh

"Sn"

sh

"In"

sh

sh

"Ti"

"Tc"
sh

"Ni"

sh

"Nb"

sh

"Sr"

sh

sh

"Si"
sh

sh

sh

sh

"Se"

sh

"Sc"
sh

"S"

sh

sh

sh

sh

sh

sh
sh sh

sh
sh

sh

"Ru"
"Rh" sh

"Rb"

sh
sh

sh

"Pd"

"Cd"

sh

"P" sh

"Ne"

sh

sh
sh

"Na"sh

"Ge"

sh

"Fe"

sh

sh

sh

"Ga"

sh

"Ca"

sh

sh
sh

sh
sh

sh

sh

"Cu"

sh
"Cr"sh "Co"sh

"N" sh

sh shsh

"Mn"
sh

sh
sh

"Mo"

sh

"Mg"

sh

sh

"Ag"

sh

"Li" sh

sh sh

"Kr"

sh

sh

"K"

sh

"He"

sh
sh

sh

sh
"Be"sh

sh
sh sh

sh
"Br"sh

"B"

sh

"H"

sh

"F"

sh
sh

sh

sh
sh

sh

sh

sh
sh

sh

sh

sh

sh

sh
sh

sh

"Cl"

sh

sh

sh

shsh"C"
sh

sh

sh

sh
sh

sh

sh
"As"

sh

"Ar"
sh

sh

sh
shsh

sh
sh

"Al"

sh

sh
sh

sh

25 / 32

Visualization (2)

Visualise divisibility of first 50 numbers:

25

50

d

24

48
d

23

46

d

22
44d

21

42
d

20

40

d
19

38

d

18

36 d

17

34

d

16 d

32
d

15
45d

30

d

14

d28
d

13

39

d

26

d

12d
d

d

11
d

d

33

d

10

d

d
d

d

9d
d

d

27d

8
dd

d

d
d

7

d

d

dd 49d

35

d

6
d

d
d

d
d

d

d

5

d

d

dd
d d

d

d
d

4

d
d

d

d

d

d

d
d

d
d

d

3
d

d d

d

dd

d
d

d

d

d

d
d

d

d
2

d

d
d

d

d d
d

d

d
d

dd

d

d
d

d

dd

d

d

d

d

d

d

26 / 32

Infinite Functions

• A finite function is λx .(x ∈ 1..5|x ∗ x) = {(1 7→ 1), (2 7→
4), (3 7→ 9), (4 7→ 16), (5 7→ 25)}

• ProB auto-detects infinite functions:
let cube = λx .(x ∈ Z|x ∗ x ∗ x) λx .(x ∈ Z|x ∗ x ∗ x)

• They can be used for constraint solving
{y |cube(cube(y)) = 512} = {2} (note: no domain restriction
required)

• The following function is not immediately detected as infinite,
but ProB detects it cannot expand it:
let isqrt = {x , r |x ∈ N∧r ∈ N∧r ∗r ≤ x∧(r+1)∗(r+1) > x}.
We can still use the function:

• isqrt(103) = 10
• isqrt[1..20] = {1, 2, 3, 4}
• closure1(isqrt)[{1024}] = {1, 2, 5, 32}

27 / 32

Uses of the Latex Mode

• model documentation: generate a documentation for a formal
model, that is guaranteed to be up-to-date and shows the
reader how to operate on the model.

• worksheets for particular tasks: can replace a formal model,
the model is built-up by Latex commands and the results
shown. This is probably most appropriate for smaller, isolated
mathematical problems in teaching.

• validation reports for model checking or assertion checking
results,

• coverage reports for test-case generation,
• as a help to debug a model, and extract information,
• documentation of ProB’s features, ...

28 / 32

The End

End of the Latex and Constraint Solving Demo

29 / 32

Using Kodkod

• ProB can make use of the Kodkod library to translate part of
B to SAT

• in the ProB REPL you just need to type :kodkod before a
predicate to activate this

• here is a predicate that works well with Kodkod and not so
well with ProB’s default solver: ∃r .(r ∈ 1..5↔ 1..5 ∧ (r ; r) =
r ∧ r 6= ∅ ∧ dom(r) = 1..5 ∧ r [2..3] = 4..5)

5 r

4

r

r

3

r

r 2

r

1

r

30 / 32

Kodkod Experiments

• ∃(z , x , y).(z ∈ 101..102 ∧ {x , y} = {z})
• ProB: z = 101 ∧ x = 101 ∧ y = 101 (10ms)
• kodkod: z = 102 ∧ x = 102 ∧ y = 102 (240ms)
• z3: x = 101 ∧ y = 101 ∧ z = 101 (70ms)

31 / 32

Send More Money

• we can compute all solutions to this classical puzzle using the
B expression
{S ,E ,N,D,M,O,R,Y |S ∗ 1000+E ∗ 100+N ∗ 10+D +M ∗
1000 + O ∗ 100 + R ∗ 10 + E = M ∗ 10000 + O ∗ 1000 + N ∗
100+E ∗10+Y ∧ [S ,E ,N,D,M,O,R,Y] ∈ 1..8→0..9∧S >
0 ∧M > 0 ∧ card({S ,E ,N,D,M,O,R,Y }) = 8} =
{(((((((9 7→ 5) 7→ 6) 7→ 7) 7→ 1) 7→ 0) 7→ 8) 7→ 2)}

32 / 32

