A Concise Summary of the B mathematical toolkit ${ }^{1}$

Each construct will be presented in its publication form, followed by the boxed ASCII form that is used with the BToolkit.

In the following: P, Q and R denote predicates; x and y denote single variables; z denotes a list of variables; S and T denote set expressions; U denotes a set of sets; E and F denote expressions; m and n denote lists of integer expressions; f and g denote functions; r denotes a relation; s and t denote sequence expressions; G, H and I denote a generalized substitutions.

1 Predicates

A predicate is a function from some set X to Boolean. In B an implementation of the type $B O O L$ is available from the machine Bool_TYPE.

The meta-predicate $z \backslash E$ (" z not free in E ") means that none of the variables in z occur free in E. This meta-predicate is defined recursively on the structure of E, but we won't do that here. The base cases are: $z \backslash(\forall z \cdot P), z \backslash(\exists z \cdot P), z \backslash\{z \mid P\}, z \backslash(\lambda z \cdot(P \mid E))$, and $\neg(z \backslash z)$.

A predicate P constrains the variable x if it contains a predicate of the form: $x \in S, x \subseteq S, x \subset S$, or $x=E$, where $x \backslash S, x \backslash E$.

1. Conjunction: $P \wedge Q$

. Equivalence: $P \Longleftrightarrow Q$ $P \Longleftrightarrow Q=P \Rightarrow Q \wedge Q \Rightarrow P$
2. Negation: $\neg P$
not P
3. Universal quantification:
$\forall z \cdot(P \Rightarrow Q) \quad!(\mathrm{z}) \cdot(\mathrm{P}=>\mathrm{Q})$
For all values of z satisfying P, Q (is true) P must constrain the variables in z.
4. Existential quantification:
$\exists z \cdot(P \wedge Q) \quad \#(\mathrm{z}) .(\mathrm{P} \& \mathrm{Q})$ There exists some values of z satisfying P for which Q. P must constrain the variables in z.
5. Substitution: $[G] P$
6. Equality: $E=F$
$E=F$
7. Inequality: $E \neq F$

E/=F

2 Sets

1. Singleton set: $\{E\}$
2. Set enumeration: $\{E, F\}$

Notice that the pattern E, F can be applied recursively to yield any finite enumeration.
3. Empty set: $\}$
4. Set comprehension: $\{z \mid P\}$
$\left\{\begin{array}{ll|l}\mathrm{z} & \mathrm{P}\} \\ \hline\end{array}\right.$
The set of all values of z that satisfy the predicate P. P must constrain the variables in z.
5. Union: $S \cup T$
$S \backslash / T$
6. Intersection: $S \cap T$
7. Difference: $S-T$

S-T
$S-T=\{x \mid x \in S \wedge x \notin T\}$
8. Ordered pair: $E \mapsto F$

E |-> F.
$E \mapsto F=E, F$
Note: in most places $E \mapsto F$ must be used, and E, F will not be accepted, but there are a few contexts, for example set comprehension: $\{x, y \mid P\}$, where $E \mapsto F$ is not accepted!
9. Cartesian product: $S \times T$

S * T
$S \times T=\{x, y \mid x \in S \wedge y \in T\}$
10. Powerset: $\mathbb{P}(S)$

POW (S)

$\mathbb{P}(S)=\{s \mid s \subseteq S\}$
11. Non-empty subsets: $\mathbb{P}_{1}(S)$
$\mathbb{P}_{1}(S)=\mathbb{P}(S)-\{\{ \}\}$
12. Finite subsets: $\mathbb{F}(S)$

FIN (S)

13. Finite non-empty subsets: $\mathbb{F}_{1}(S)$

FIN1 (S)

14. Cardinality: $\operatorname{card}(S)$

card (S)

Defined only for finite sets
15. Generalized union: union (U)

The union of all the elements of U.
$\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$
union $(U)=\{x \mid x \in S \wedge(\exists s \cdot s \in U \wedge x \in s)\}$
where $x, s \backslash U$
16. Generalized intersection: inter $(U) \quad$ inter (U) The intersection of all the elements of U.
$\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ $\operatorname{inter}(U)=\{x \mid x \in S \wedge(\forall s \cdot s \in U \Rightarrow x \in s)\}$ where $x, s \backslash U$
17. Generalized union:
$\bigcup z \cdot(P \mid E) \quad$ UNION (z).(P | E)
P must constrain the variables in z.
$(\forall z \cdot(P \Rightarrow E \subseteq T)) \Rightarrow$
$\bigcup z \cdot(P \mid E)=\{x \mid x \in T \wedge(\exists z \cdot(P \wedge x \in E))\}$
where $z \backslash T, P, E$
18. Generalized intersection:
$\bigcap z \cdot(P \mid E) \quad$ INTER (z).(P | E)
P must constrain the variables in z.

[^0]$(\forall z \cdot(P \Rightarrow E \subseteq T)) \Rightarrow$
$\bigcap z \cdot(P \mid E)=\{x \mid x \in T \wedge(\forall z \cdot(P \Rightarrow x \in E))\}$ where $z \backslash T, P, E$

2.1 Set predicates

1. Set membership: $E \in S$

2. Set non-membership: $E \notin S$

E /: S
3. Subset: $S \subseteq T$

4. Not a subset: $S \nsubseteq T$

5. Proper subset: $S \subset T$

6. Not a proper subset: $s \not \subset t$

S /<<: T

3 Numbers

The following is based on the set of natural numbers (non-negative integers), but the operators extend (directly in most cases) to the set of integers.

1. The set of natural numbers: \mathbb{N}
2. The set of positive natural numbers: \mathbb{N}_{1}

NAT1 $\mathbb{N}_{1}=\mathbb{N}-\{0\}$
3. Minimum: $\min (S)$

Note: $S: \mathbb{F}_{1}(\mathbb{N})$
4. Maximum: $\max (S)$

Note: $S: \mathbb{F}_{1}(\mathbb{N})$
5. Sum: $m+n$
m + n
6. Difference: $m-n$
7. Product: $m \times n$

8. Quotient: m / n
9. Remainder: $m \bmod n$

10. Interval: $m . . n$
$m \ldots n=\{i \mid m \leq i \leq n\}$.
11. Set summation:
$\sum z \cdot(P \mid E) \quad \operatorname{SIGMA}(z) \cdot(\mathrm{P} \mid \mathrm{E})$ $\{z \mid P\}=\{ \} \Rightarrow \Sigma z \mid(P \mid E)=0$.
12. Set product: $\Pi z \mid(P \mid E)$

PI(z).(P | E)
Defined only for $\{z \mid P\} \neq\{ \}$.

3.1 Number predicates

1. Greater: $m>n$
2. Less: $m<n$
3. Greater or equal: $m \geq n$
4. Less or equal: $m \leq n$

4 Relations

A relation is a set of ordered pairs; a many to many mapping.

1. Relations: $S \leftrightarrow T$

S <-> T
$S \leftrightarrow T=\mathbb{P}(S \times T)$
2. Domain: $\operatorname{dom}(r)$
dom (r)
$\forall r \cdot r \in S \leftrightarrow T \Rightarrow$
$\operatorname{dom}(r)=\{x \mid(\exists y \cdot x \mapsto y \in r)\}$
3. Range: $\operatorname{ran}(r)$
ran (r)
$\forall r \cdot r \in S \leftrightarrow T \Rightarrow$
$\operatorname{ran}(r)=\{y \mid(\exists x \cdot x \mapsto y \in r)\}$
4. Forward composition: $p ; q$
$\forall p, q \cdot p \in S \leftrightarrow T \wedge q \in T \longleftrightarrow U \Rightarrow$
$p ; q=\{x, y \mid(\exists z \cdot x \mapsto z \in p \wedge z \mapsto y \in q)\}$
5. Backward composition: $p \circ q$
p circ q $p \circ q=q ; p$
6. Identity: $\operatorname{id}(S)$
id(S)
$\operatorname{id}(S)=\{x, y \mid x \in S \wedge y \in S \wedge x=y\}$.
7. Domain restriction: $S \triangleleft r$

S < l r

 $S \triangleleft r=\{x, y \mid x \mapsto y \in r \wedge x \in S\}$.8. Domain substraction: $S \notin r$

S \ll \| r $S \notin r=\{x, y \mid x \mapsto y \in r \wedge x \notin S\}$.
9. Range restriction: $r \triangleright T$

$r \triangleright T=\{x, y \mid x \mapsto y \in r \wedge y \in T\}$.
10. Range subtraction: $r \triangleright T$

$r \triangleright T=\{x, y \mid x \mapsto y \in r \wedge y \notin T\}$.
11. Inverse: r^{-1}
$r^{-1}=\{y, x \mid x \mapsto y \in r\}$.
12. Relational image: $r[S]$
$r[S]=\{y \mid \exists x \cdot x \in S \wedge x \mapsto y \in r\}$.
13. Right overriding: $r_{1} \& r_{2}$ $r_{1} \nLeftarrow r_{2}=r_{2} \cup\left(\operatorname{dom}\left(r_{2}\right) \nLeftarrow r_{1}\right)$.
14. Left overriding: $r_{1} \mapsto r_{2}$
r1 +> r2 $r_{1} \mapsto r_{2}=r_{1} \cup\left(\operatorname{dom}\left(r_{1}\right) \notin r_{2}\right)$.
15. Direct product: $p \otimes q$ $p \otimes q=\{x,(y, z) \mid x \mapsto y \in p \wedge x \mapsto z \in q\}$.
16. Parallel product: $p \| q$
 $p \| q=\{(x, y),(m, n) \mid x \mapsto m \in p \wedge y \mapsto n \in q\}$.
17. Iteration: r^{n}
iterate (r, n) $r \in S \leftrightarrow S \Rightarrow r^{0}=\operatorname{id}(S) \wedge r^{n+1}=r ; r^{n}$.
18. Closure: r^{*}
closure (r)
$r^{*}=\bigcup n \cdot\left(n \in \mathbb{N} \mid r^{n}\right)$.
19. Projection: $\operatorname{prj1}(S, T)$
prj1(S,T)
$\operatorname{prj1}(S, T)=$
$\{(x, y), z \mid x, y \in S \times T \wedge z=x\}$.
20. Projection: $\operatorname{prj} 2(S, T)$
prj2(S,T)
$\operatorname{prj} 2(S, T)=$
$\{(x, y), z \mid x, y \in S \times T \wedge z=y\}$.

4.1 Functions

A function is a relation with the restriction that each element of the domain is related to a unique element in the range; a many to one mapping.

1. Partial functions: $S \longrightarrow T \quad \mathrm{~S}+->\mathrm{T}$ $S \mapsto T=\left\{r \mid r \in S \leftrightarrow T \wedge r^{-1} ; r \subseteq i d(T)\right\}$.
2. Total functions: $S \longrightarrow T \quad$ S --> T $S \longrightarrow T=\{f \mid f \in S \rightarrow T \wedge \operatorname{dom}(f)=\bar{S}\}$.
3. Partial injections: $S \nrightarrow T \quad \mathrm{~S} \mathrm{>+>} \mathrm{~T}$ $S \nrightarrow T=\left\{f \mid f \in S \mapsto T \wedge f^{-1} \in T \longrightarrow S\right\}$. One-to-one relations.
4. Total injections: $S \succ T$

$S \succ T=S \hookrightarrow T \cap S \longrightarrow T$.
5. Partial surjections: $S \nrightarrow T \quad \mathrm{~S}+->\mathrm{T}$
$S \mapsto T=\{f \mid f \in S \mapsto T \wedge \operatorname{ran}(f)=T\}$.
Onto relations.
6. Total surjections: $S \rightarrow T$

S -->> T
$S \longrightarrow T=S \nrightarrow T \cap S \longrightarrow T$.
7. Bijections: $S \hookrightarrow T$

S >->> T
$S \multimap T=S \multimap T \cap S \rightarrow T$.
One-to-one and onto relations.
8. Lambda abstraction:
$\lambda z \cdot(P \mid E)$
$\% z$. (P|E)
P must constrain the variables in z.
$\lambda z \cdot(P \mid E)=\{z, y \mid z \in\{z \mid P\} \wedge y=E\}$, where $y \backslash P$ and $y \backslash E$.
9. Function application: $f(E)$
$E \mapsto y \in f \Rightarrow f(E)=y$.

4.2 Sequences

Sequences are ordered aggregations, and can be modelled by functions whose domains are finite, coherent domains $1 . . n$.

1. The empty sequence: []
[]$=\{ \}$.
Note: [] is used for all sequences except the empty ASCII sequence!
2. The set of finite sequences: $\operatorname{seq}(S)$
seq S
$\operatorname{seq}(S)=\left\{f \mid f \in \mathbb{N}_{1} \longrightarrow S \wedge \exists n \cdot n \in \mathbb{N} \wedge \operatorname{dom}(f)=\right.$ $1 . . n\}$.
3. The set of finite non-empty sequences:
$\operatorname{seq}_{1}(S)$

seq1 (S)

$\operatorname{seq}_{1}(S)=\operatorname{seq}(S)-\{[]\}$.
4. The set of injective sequences:
iseq (S)
iseq(S)
iseq $(S)=\operatorname{seq}(S) \cap\left(\mathbb{N}_{1} \nrightarrow S\right)$.
5. Permutations: perm (S)
perm (S)
$\operatorname{perm}(S)=\operatorname{iseq}(S) \cap\left(\mathbb{N}_{1} \rightarrow S\right)$.
The set of bijective sequences.
6. Sequence concatenation: $s^{\wedge} t$
$s^{\complement} t$ is the sequence formed by appending the sequence t to the sequence s.
7. Prepend element: $E \rightarrow s$
$E \rightarrow s=[E] \wedge s$.
8. Append element: $s \leftarrow E$
s <- E
$s \leftarrow E=s^{\curvearrowleft}[E]$.
9. Singleton sequence: $[E]$
$[E]=\{1 \mapsto E\}$.
10. Sequence construction: $[E, F]$

$$
[\mathrm{E}, \mathrm{~F}]
$$

$[E, F]=[E] \leftarrow F$.
11. Size: $\operatorname{size}(s)$
size(s)
$\operatorname{size}(s)=\operatorname{card}(s)$.
12. Reverse: $\operatorname{rev}(s)$

rev (s)

$\forall i \cdot i \in \operatorname{dom}(s) \Rightarrow$

$$
\operatorname{rev}(s)(i)=s(\operatorname{size}(s)+1-i)
$$

13. Take: $s \uparrow n$
s / | $\backslash n$
$s \uparrow n=1 . . n \triangleleft s$.
14. Drop: $s \downarrow n \quad \mathrm{~s} \backslash \mathrm{I} / \mathrm{n}$
$s \downarrow n=(\lambda m \cdot(m \in \mathbb{N} \mid m+n)) ;(1 \ldots n \notin s)$.
$(s \downarrow n)(i)=s(i+n)$
15. First element: first (s)
first(s)
$\operatorname{first}(s)=s(1)$
Defined only for non-empty sequence.
16. Last element: last (s)
last(s)
last $(s)=s(\operatorname{size}(s))$
Defined only for non-empty sequence.
17. Tail: tail (s)
tail(s)
$\operatorname{tail}(s)=s \downarrow 1$
Defined only for non-empty sequence.
first $(s) \rightarrow \operatorname{tail}(s)=s$.
18. Front: front (s)
front (s)
front $(s)=s \uparrow(\operatorname{size}(s)-1)$
Defined only for non-empty sequence.
front $(s) \leftarrow \operatorname{last}(s)=s$.
19. Generalized concatenation:
conc ($s s$)
conc (ss)
Defined on sequences of sequences.
$\operatorname{conc}([])=[]$
$\operatorname{conc}(s \leftarrow E)=\operatorname{conc}(s)^{\wedge} E$.
20. Strings: "..."

Sequences of characters are delimited by quotes.

5 Substitutions

The state of a machine can be changed by substituting values for the variables in the state. The following substitutions formalize a number of alternative ways of achieving this.

1. Substitution: $[G] P$
$[G] P$ is a predicate obtained by replacing the values of the variables in P according to the substitution G.
2. The null substitution: skip
$[s k i p] R=R$.
3. Simple substitution: $x:=E$
$\mathrm{x}:=\mathrm{E}$
Replace free occurrences of x by E.
4. Boolean substitution: $x:=\operatorname{bool}(P) \mathrm{x}:=\mathrm{bool}(\mathrm{P})$ Substitute the Boolean values TRUE and FALSE according to the truth of P.
5. Choice from set: $x: \in S \quad \mathrm{x}:: \mathrm{S}$ Arbitrarily choose a value from the set S.
6. Choice by predicate: $x: P \quad \mathrm{x}: \mathrm{P}$ Arbitrarily choose a value that satisfies the predicate P. P must constrain the variable x.
7. Functional override: $f(x):=E \quad \mathrm{f}(\mathrm{x}):=\mathrm{E}$ Substitute the value E for the $\operatorname{expression} f$ at point x.
$f(x):=E=f:=f \lessdot\{x \mapsto E\}$.
8. Multiple substitution:
$x, y:=E, F$
$\mathrm{x}, \mathrm{y}:=\mathrm{E}, \mathrm{F}$
Concurrent substitution of the values E and F for the free occurrences of x and y, respectively.
9. Parallel substitution: $G \| H$ G || H
Apply the substitutions G and H concurrently.
Parallel substitution is not given a general definition; it is eliminated by rewriting rules. Notice $[x:=E] R \|[y:=F] R=[x, y:=E, F] R$.
10. Sequential substitution: $G ; H \quad$ G ; H

Apply the substitution G and then H.
$[G ; H] R=[G]([H] R)$.
11. Precondition: $P \mid G$

P | G
Substitution G is subject to a precondition, P. $[P \mid G] R=P \wedge[G] R$.
12. Guarding: $P \Longrightarrow G$

P ==> G
Substitution G applies only if state satisfies the guard P.
$[P \Longrightarrow G] R=P \Rightarrow[G] R$.
13. Alternatives: $G \rrbracket H$

Either G or H.
$[G \| H] R=[G] R \wedge[H] R$.
14. Unbounded choice: @ $z \cdot G \quad @ z$. G Choose any values for z. $[@ z \cdot G] R=\forall z \cdot[G] R$.

5.1 Alternative syntax

1. Grouping: BEGIN G END
2. PRE P THEN G END
$=P \mid G$
3. IF P THEN G ELSE H END
$=(P \Longrightarrow G) \rrbracket(\neg P \Longrightarrow H)$
4. IF P THEN G END
$=$ IF P THEN G ELSE skip END
5. IF P_{1} THEN G_{1} ELSIF P_{2} THEN G_{2} \ldots ELSE G_{n} END
6. IF P_{1} THEN G_{1} ELSIF P_{2} THEN G_{2} \ldots ELSIF P_{n} THEN G_{n} END
7. CHOICE G OR H END $=G \rrbracket H$
8. SELECT P THEN G WHEN ... WHEN Q THEN H ELSE I END $=P \Longrightarrow G \rrbracket \ldots \rrbracket Q \Longrightarrow H \rrbracket \neg P \wedge \ldots \wedge \neg Q \Longrightarrow I$
9. SELECT P THEN G WHEN ... WHEN Q THEN H END
$=P \Longrightarrow G \rrbracket \ldots \rrbracket Q \Longrightarrow H$
10. CASE E OF EITHER m THEN G OR n THEN $H \ldots$ ELSE I END
$=E \in\{m\} \Longrightarrow G \| E \in\{n\} \Longrightarrow H \ldots E \notin$ $\{m, n, \ldots\} \Longrightarrow I$
11. CASE E OF EITHER m THEN G OR n THEN $H \ldots$...END
default case skip
12. VAR z IN G END
$=@ z \cdot G$
13. ANY z WHERE P THEN G END
$=@ z \cdot P \Longrightarrow G$
14. LET x BE $\mathrm{x}=\mathrm{E}$ IN G END
$=@ x \cdot x=E \Longrightarrow G$, where $x \backslash E$

5.2 While loop substitution

WHILE P DO G VARIANT E INVARIANT Q END

The while-loop substitution is allowed only in implementation machines. The definition of the substitution [WHILE P DO G VARIANT E INVARIANT Q END] R involves a least fixed point and is not normally used. Instead, an approximation to the substitution is used.

Given some predicate R :

$$
\begin{aligned}
Q \wedge P & \Rightarrow[G] Q \\
Q \wedge P & \Rightarrow E \in \mathbb{N} \\
Q \wedge P & \Rightarrow[n:=E][G](E<n) \\
\neg P \wedge Q & \Rightarrow R \\
\Rightarrow \quad & \\
Q & \Rightarrow \text { WHILE } P \text { DO } G \\
& \text { VARIANT } E \text { INVARIANT } Q \text { END }] R
\end{aligned}
$$

where n is a new variable satisfying $n \backslash E$ and $n \backslash G$.

[^0]: ${ }^{1}$ Version March 5, 2003⑲96-2003 Ken Robinson

