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Abstract. Well-Definedness is important for many formal methods. In
B and Event-B it ensures that certain kinds of errors (e.g., division by 0)
cannot appear and that proof rules based on two-valued logic are sound.
For validation tools such as ProB, well-definedness is important for con-
straint solving. B and Event-B establish well-definedness by generating
dedicated proof obligations (POs). Unfortunately, the standard provers
are not always very good at discharging them. In this paper, we present a
new integrated technique to simultaneously generate and discharge well-
definedness POs. The implementation contains a dedicated rule-based
prover written in Prolog and supports B, Event-B and extensions thereof
for data validation. We show that the generation and discharging is sig-
nificantly faster than existing implementations in rodin and Atelier-B
and we show that a large number of POs are automatically discharged.
The POs are fine-grained enough to provide precise source code feedback,
and allow inspection of problematic POs within various editors.

1 Introduction and Motivation

Well-definedness is an important issue in formal methods. Various approaches
exist to dealing with ill-defined expressions such as a division by zero or a func-
tion applied outside of its domain.

Three-valued logic is one such approach, but is rarely used in practice. In-
deed, some important proof rules or techniques (e.g., proof by contradiction)
are not sound in three-valued logic. This famous quote by the mathematician
Hilbert is also relevant for automated provers: “Taking the principle of excluded
middle from the mathematician would be the same, say, as proscribing the tele-
scope to the astronomer or to the boxer the use of his fists. To prohibit existence
statements and the principle of excluded middle is tantamount to relinquishing
the science of mathematics altogether.”.1

Another approach is to only allow total functions, but preclude any knowl-
edge about the function’s value for problematic inputs. E.g., in the case of divi-
sion the expression 1/0 would denote a number, but one has no knowledge about
its value within a proof. In this approach we thus can neither prove 1/0 = 0 nor
1/0 6= 0, but we can prove the predicates 1/0 = 1/0 or ∃y.y = 1/0. This ap-
proach is convenient for constraint solving or model finding and is typically used

1 Taken from https://en.wikipedia.org/wiki/Brouwer?Hilbert controversy.



by SMTLib or Why3 [21]. Its main drawback is that problematic expressions
such as 1/0 may lurk within a formal model without a user realising it.

The approach employed by the B-method is to generate well-definedness
(WD) proof obligations (POs) [5] for all formulas under consideration. These
POs can be generated by the rodin platform [3] or by Atelier-B (where they
are called WD-lemmas). If they are discharged we know that the corresponding
formulas are well-defined and that we can apply two-valued logic. This approach
is good for automated proving, enabling to apply effective provers based on two-
valued logic. Also, for users it is good to obtain feedback about ill-defined ex-
pressions, rather than silently giving them an arbitrary value. A false WD proof
obligation pinpoints a potential error in formal model. There are unfortunately
a few outstanding practical issues:

– discharging the WD proof obligations themselves is often quite time consum-
ing, and the built-in provers of rodin or Atelier-B are not very good at
discharging certain types of relevant goals (e.g., finiteness proof obligations
or boundedness proof obligations for min and max).

– The POs generated by rodin or Atelier-B apply to entire formulas (e.g.,
invariants or guards), and it would be useful to be able to more precisely
pinpoint problematic expressions and operators in the formal models. This
is useful for user feedback, e.g., in an editor. Also, for constraint solv-
ing, ill-defined expressions pose a particular threat and also reporting well-
definedness errors is very difficult. Here a precise annotation can help the
constraint solver in knowing, e.g., which division is susceptible to divide by
zero. We return to this in Section 6 below.

– for data validation [24], well-definedness is also an important issue. However,
rodin is missing some datatypes such as strings and sequences (the latter
can be added via the theory plugin; but automated proof support is very
limited). While Atelier-B supports sequences and strings, its automated
proof support for sequences is not very good. Furthermore, in practice, we
use a few extensions to B which are not (yet) supported by Atelier-B, such
as the if-then-else and let for constructs expressions (see [17]).

Contributions In this article we present a new combined well-definedness PO
generator and prover, which has been integrated into the ProB validation tool,
and which

– is based on a fast algorithm to generate WD proof obligations and discharge
them at the same time,

– deals with Event-B, classical B and ProB’s extensions for data validation (or
with any other formalisms which ProB translates internally to B, namely
TLA+, Alloy and Z),

– provides proof support for the B sequence datatype and its many operators,
– produces precise error feedback, either in ProB’s own editor, Atom or VS-

Code to the end user,
– and can provide precise annotation of those operator nodes in the abstract

syntax tree of a formal model which are susceptible to well-definedness errors.
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Our prover can be seen as a specialized successor to the ml (mono-lemma) rule-
based prover from Atelier-B, dedicated to discharging WD POs.

2 Well-Definedness Proof-Obligations

We first recall the essential aspects of the well-definedness proof-obligations, as
described in [5]. We suppose some familiarity with the B method. By formula
we here mean either an expression (e.g, x + 1), a predicate (e.g., x > 1) or a
substitution (e.g., x := 1). We denote logical equivalence of predicates by ≡.

With each formula f we associate a well-definedness predicate WD(f). WD(f)
is defined inductively over the structure of f and can be seen as a syntactic op-
erator: it maps a formula f to a predicate. For Event-B the rules can be found
in Section 5 of [27] in the rodin handbookor partially in section 5.2.12 of [2].

Here are two such rule for division and function application, where the type
of f is P(Df ×Rf ):

WD(a÷ b) ≡WD(a) ∧WD(b) ∧ b 6= 0

WD(f(a)) ≡ a ∈ dom(f) ∧ f ∈ Df 7→Rf

Here is a generic rule for binary operators ◦ which do not have their own
WD condition; they only require their arguments to be well-defined for the
entire formula to be well-defined:

WD(a ◦ b) ≡WD(a) ∧WD(b)

Similarly, an integer literal or a variable has no well-definedness condition, i.e.,
the WD predicate is true:

WD(x) ≡ > for integer literals or variables x

We thus have for example WD(10÷ (x÷ y)) ≡ y 6= 0 ∧ x÷ y 6= 0.

L and D and Connectives An important aspect arises is the treatment of the
logical connectives. There are in fact two approaches [5, 8] to computing WD :

– the left-to-right approach L which requires that well-definedness of a formula
must be established by predicates on its left,

– and the more flexible D approach, which does not impose a strict left-to-right
examination of the predicates.

rodin uses the L approach, meaning that:

WD(P ∧Q) ≡WD(P ) ∧ (P ⇒WD(Q))

In other words, Q must not be well-defined if P is false. Similarly,

WD(P ∨Q) ≡WD(P ) ∧ (P ∨WD(Q))
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Note that the rodin handbook uses L(.) to denote this left-to-right WD-
condition. [8] uses ∆MC

P , where MC stands for Mc Carthy (see also [9] for
CVC-lite).

The more powerful D approach [5] uses the following rule

D(P ∧Q) ≡ (D(P ) ∧ D(Q)) ∨ (D(P ) ∧ ¬P ) ∨ (D(Q) ∧ ¬Q)

In [8] this operator is written as ∆K
P instead, where K stands for Kleene.

Given P = (x > 0 ∧ 100/x < 50) and P ′ = (100/x < 50 ∧ x > 0) we have
that WD(P ) ≡ > and WD(P ′) ≡ (x 6= 0) 6≡ > but D(P ) ≡ D(P ′) ≡ >. The
D approach is more powerful, and is commutative wrt ∧ and ∨ but suffers from
an exponential blowup of the size of the WD proof obligations. It is not used in
practice.2 We will also use the L approach in the remainder of this article.

B vs Event-B For classical B the conditions are associated with each operator in
[1] or the Atelier-B handbook [12]. The treatment of substitutions is handled
in [8]. There are some subtle differences in the WD conditions of B and Event-B.
E.g., exponentiation is less permissive in Event-B than inclassical B: (−2)3 is
allowed in classical B, but not well-defined in Event-B (cf, page 43, Table 5.2
in [27]). For modulo -3 mod 2 =-1 is well-defined and true in Event-B, but is
not well-defined in classical B. But this is not due to a difference in the WD
condition, but due to the fact that -3 mod 2 is parsed as -(3 mod 2) in rodin
and (-3) mod 2 in Atelier-B.3

There is, however, no fundamental difference in the derivation of the WD
proof obligations for predicates and expressions (but classical B has many more
substitutions, see Sect. 3). Our implementation has a flag indicating the language
mode (B, Event-B, Z, Alloy or TLA+), to appropriately adapt the POs.

There is, however, one fundamental difference between rodin and Atelier-
B. rodin adds the goals of WD proof obligations to subsequent proof obligations.
The motivation is to avoid having to re-prove the same goal multiple times. This
technique is not described in the [2, 27], but can be found in [26]. In Atelier-B
this technique is not applied.

In the example below, we have that the WD PO for axiom axm2 in rodin
is f ∈ Z↔ Z ⇒ f ∈ Z 7→ Z ∧ 2 ∈ dom(f). This PO cannot be proven (and the
model contains a WD error), but its goals f ∈ Z 7→Z and 2 ∈ dom(f) are added
by rodin to the hypotheses of the PO for the theorem thm1, meaning that it
can be trivially proven with the hyp rule (which checks if a hypothesis is on the
stack).

1 context Test_WD_Hyp
2 constants f
3 axioms

2 [13] discusses combining power of D with efficiency of L, but is not used in practice as
far as we know. It seems to require one to establish the truth or falsity of individual
formulas, which may not be easily feasible in practice.

3 The rodin handbook requires modulo arguments to be non-negative, which is cor-
rect; [27] is in error.
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4 @axm1 f : INT <-> INT // f is a relation
5 @axm2 f(2) = 3 // this can give rise to a WD error
6 theorem @thm1 f : INT +-> INT // can be proven with hyp in Rodin
7 theorem @thm2 f(2) = 4
8 end

Listing 1.1. WD Event-B Rodin Example

This optimisation also means that discharging all WD POs is very important
in rodin: one simple error like using f(2) can be used to prove arbitrary goals
(e.g., above one can easily prove a theorem 22=33).

In our algorithm we do not use this optimisation of rodin. As we will see,
our algorithm is fast enough without it, and we also want to establish well-
definedness for each program point in isolation and detect all sub-expressions
which are potentially ill-defined, not just the first one. For example, in rodin
the well-definedness PO of theorem thm2 is proven. This is particularly relevant
when we want to use the information for a constraint solver: it has to know for
every program point whether it is guaranteed to be well-defined or not.

3 Fine-grained WD Proof Obligations

Below we define our more fine grained way of computing well-definedness proof
obligations. Rather than computing one proof obligation for an entire formula
(such as an invariant or axiom), we will derive multiple proof obligations for
individual operators within each formula. Our formalization thus uses a rela-
tion rather than a function taking a formula and producing a single PO. Our
formalization also manages explicitly a single hypothesis environment, rather
than putting hypotheses piecemeal into the formulas. The reasons will become
apparent later: our formalisation manages the hypotheses like a stack and will
correspond to an efficient implementation in Prolog.

Our PO generation is formalised using the following ternary relation: H ⊗
F � P means that given the current hypotheses H the formula F gives rise to a
proof obligation P . P will always be a predicate of the form Hypotheses ⇒ Goal .

For example, we will have that:

– H ⊗ (10÷ b)÷ c � H ⇒ b 6= 0 and
– H ⊗ (10÷ b)÷ c � H ⇒ c 6= 0.

We will first provide a generic rule for all binary operators (such as ÷, +,
∪) which always require both arguments to be well-defined without additional
hypotheses. We first define the direct well-definedness condition WDC for every
such operator, ignoring WD conditions of arguments. Here are a few rules, where
the type of f is P(Df ×Rf ):

WDC (a÷ b) ≡ b 6= 0

WDC (a+ b) ≡ >
WDC (f(a)) ≡ a ∈ dom(f) ∧ f ∈ Df 7→Rf
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WDC (first(f)) ≡ f ∈ seq(Rf ) ∧ f 6= ∅

WDC (inter(a)) ≡ a 6= ∅

We can now provide three generic inference rules for all those binary op-
erators BOP where no hypotheses are added or removed for discharging the
well-definedness of its arguments:

H ⊗ a ◦ b � H ⇒WDC (a ◦ b) ◦ ∈ BOP

H ⊗ a � PO
H ⊗ a ◦ b � PO

◦ ∈ BOP
H ⊗ b � PO

H ⊗ a ◦ b � PO
◦ ∈ BOP

For unary operators UOP such as -, union, inter, conc we have the following
rules:

H ⊗ ◦a � H ⇒WDC (◦a)
◦ ∈ UOP

H ⊗ a � PO
H ⊗ ◦a � PO

◦ ∈ UOP

The logical connectives are now dealt with as follows. The equivalence ⇔
can simply be treated by the BOP inference rules with WDC (P ⇔ Q) = >.
Similarly, negation can be treated as a unary operator with WDC (¬P ) = >.

Let us now deal with conjunction. Here we can observe that the predicate P
is pushed onto the hypotheses H for the second argument Q:

H ⊗ P � PO
H ⊗ P ∧Q � PO

H ∧ P ⊗Q � PO

H ⊗ P ∧Q � PO

The implication has exactly the same inference rules:

H ⊗ P � PO
H ⊗ P ⇒ Q � PO

H ∧ P ⊗Q � PO

H ⊗ P ⇒ Q � PO

For disjunction the negation of P is pushed onto the hypotheses for Q:

H ⊗ P � PO
H ⊗ P ∨Q � PO

H ∧ ¬P ⊗Q � PO

H ⊗ P ∨Q � PO

Here we clearly see the difference with the classical formalization of the WD
operator in the literature, which inserts a hypothesis into a disjunction of the
resulting PO formula: WD(P ∨Q) ≡WD(P ) ∧ (P ∨WD(Q)).

The treatment of quantifiers requires the renaming operator ρV (H) which
renames all variables in the Hypotheses which clash with variable in V to fresh
new variables. With this operator we can produce the rules for existential and
universal quantification:

ρV (H)⊗ P � PO

H ⊗ ∃V.P � PO
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ρV (H)⊗ P ⇒ Q � PO

H ⊗ ∀V.P ⇒ Q � PO

We have similar rules for other quantified operators, such as
⋃

or
⋂

.

Proof Obligations for Substitutions The Atelier-B handbook does not detail
how well-definedness is established for substitutions, and this aspect is not rele-
vant in rodin. For our tool we first developed our own WD proof rules and then
discovered that [8] contains WD rules for substitutions, which seem mostly to
have been taken over in Atelier-B. Some constructs like parallel composition
or CHOICE are simply “transparent” for WD computation and can be treated
in the same way as the binary operators above. This means that in a parallel
construct P ‖ Q each branch must be well-defined on its own: one cannot make
use of guards in P to prove WD(Q) or vice-versa. Some examples in Sect. 5.3
incorrectly rely on the guards in P to establish well-definedness in Q.

Some constructs like IF-THEN-ELSE or SELECT are similar to conjunction
in that hypotheses are added for certain subgoals.

For the assignment, B also allows to assign to functions and nested functions
and to records and nested records. Here are the rules for these cases.

H ⊗ E � PO
H ⊗ x := E � PO

x is a simple variable

H ⊗ E � PO

H ⊗ r(x) := E � PO

H ⊗ r � PO

H ⊗ r(x) := E � PO

H ⊗ E � PO

H ⊗ r′f(x) := E � PO

H ⊗ r � PO

H ⊗ r′f(x) := E � PO

The above means that for the assignment r(x)(y) := E we require E to be
well-defined and we require that x ∈ dom(r) and that r is a partial function.

For the WHILE substitution we need to know the variables x that are mod-
ified in the loop. We adapted the proof rule from [8] to our formalism (i.e., the
invariant I is pushed onto the stack for P , V and B and P is pushed onto the
stack for discharging B):

A tricky aspect is the sequential composition. [8] contains a few specific rules
and was trying to avoid having to apply the weakest-precondition computations
in full.4 We have adapted a few of the rules from [8], the most used one being
WD(x := E ; Q ) = WD(E) ∧WD([x := E]Q)) where [x := E](P ) = P [E/x].
Note that [8] also contains a rule for parallel composition followed by sequential
composition which is wrong. There is also a special rule for a WHILE loop in
the LHS of a sequential composition which we have not implemented. The rules
implemented thus far proved sufficient for many applications.

4 Atelier-B now uses full WP calculus (private communication from Lilian Burdy).
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4 Fast Integrated POG and Prover

One can notice that in the above proof rules for H ⊗ F � P the hypotheses
H are passed through to subarguments of F and sometimes a new hypothesis is
added. This means that a lot of proof obligations will share common hypotheses.
In rodin each well-definedness PO is discharged on its own and a new prover
instance is launched for every PO. This is not very efficient, especially when the
number of hypotheses becomes large (cf. Section 5). In Atelier-B the hypothe-
ses can be numbered and shared amongst proof obligations, which is useful when
discharging multiple proof obligations in one tool run. However, for every PO
the hypotheses must still be assembled.

One key idea of this paper is to discharge the POs in the same order they are
generated by our POG rules and to treat the hypotheses as a stack. E.g., when
one enters the right-hand side of a conjunction we push the left-hand side as a
hypothesis onto the stack, when leaving the conjunction we pop this hypothesis
again. The pushing of a new hypothesis can also conduct a few proof-related
tasks, like normalization and indexing.

Another insight of this paper is that in the Prolog programming language
the popping can be done very efficiently upon backtracking: the Prolog virtual
machine is optimised for these kinds of operations and does them in a memory
and time efficient way.

Below we show our implementation of the above POG rule for the conjunc-
tion. The Prolog predicate compute wd encodes our relation Hypotheses ⊗ A ∧
B � PO with some additional arguments (for source code locations, typing
and options). You can see that there is a call to push A onto the hypothesis
stack, but no pop operation, which is performed upon backtracking.

1 compute_wd_aux(conjunct(A,B),_,_,_,_,Hypotheses ,Options ,PO) :- !,
2 (compute_wd(A,Hypotheses ,Options ,PO)
3 ;
4 push_hyp(Hypotheses ,A,Options ,NewHyp),
5 compute_wd(B,NewHyp ,Options ,PO)).

Listing 1.2. Prolog clause for processing the conjunction

The push hyp predicate will also filter useless hypotheses and normalise the
useful ones. It also performs indexing to ensure that subsequent proving steps
can be performed efficiently. For commutative operators this may mean to store
a hypothesis twice. Our technique will ensure that this overhead is only incurred
once for all proof obligations having that particular hypothesis on the stack.

For quantifiers we need to provide the renaming mechanism ρV (H). To avoid
traversing all hypotheses upon every clash, our implementation of ρV (H) actu-
ally stores a list of variable clashes and renamings. The renamings are not applied
to the existing hypotheses, only to new hypotheses and the final goal of the PO.

In essence, the main ideas for obtaining a fast and effective proof obligation
generator and prover are:

– use Prolog pattern matching on the syntax tree to implement the POG
generation,
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– combine proof-obligation generation and proving in a single traversal, dis-
charging POs in the same order they are generated,

– organize the hypothesis as a stack, use Prolog backtracking for popping from
the stack,

– pre-compile the hypotheses to enable logarithmic lookup of hypotheses,
– use a rule-based prover in Prolog which only uses such logarithmic lookups

in hypotheses, performs rewrite steps using Prolog unification and limiting
non-determinism as much as possible.

Normalization and Lookup of Hypotheses Normalization is employed by many
provers, e.g., it is used in Atelier-B to minimize the number of proof rules that
have to be implemented (see Chapter 3 of Interactive Prover manual of [12]).

Our rules are different from the ones in [12], as we are also concerned with
ensuring logarithmic lookup of hypotheses. Our hypotheses are stored as an
AVL tree using the normalised Prolog term as key. AVL trees are self-balancing
binary search trees with logarithmic lookup, insertion and deletion (see, e.g.,
Section 6.2.3 of [20]). We have used the AVL library of SICStus Prolog 4, and
implemented a new predicate to enable logarithmic lookup if the first argument
of the top-level operator is known, but the second argument may be unknown
(making use of lexicographic ordering of Prolog terms).

Predicate Normalization Additional Hypotheses Conditions

x > n x ≥ n + 1 if n is a number
n > x x ≤ n− 1 if n is a number
x > y x ≥ y ∧ x 6= y y ≤ x otherwise

x < n x ≤ n− 1 if n is a number
n < x x ≥ n + 1 if n is a number
x < y x ≤ y ∧ x 6= y y ≥ x otherwise

A ⊂ B A ⊆ B ∧A 6= B B ⊇ A

Table 1. A few normalization rules and the generation of additional hypotheses

All hypothesis lookups in our prover are logarithmic (in the number of hy-
potheses); no lookup requires a linear traversal. Some hypotheses are stored
multiple times to enable this logarithmic lookup based on first argument: the
predicate a = b is also stored in the form b = a if the term b is susceptible
to be looked up. The predicate a < b may result in three hypotheses being
added: a ≤ b, b ≤ a, a 6= b. a 6= b is only stored once, as upon lookup time both
arguments are known. The Table 1 shows some of our normalization rules.

Table 2 shows the lookups that are made by our prover in the hypothesis
stack. As mentioned, the first argument A is always known. All other hypotheses
not occuring in Table 2 are not pushed onto the stack (in proving mode), as they
would never be used anyway.

Predicates Supported by the Prover The rule-based prover contains various Pro-
log predicates for proving a few core B predicates, namely those listed in Table 3.
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Patterns for Lookups

finite(A) A ∈ B
A = B A 6= B
A ≤ B A ≥ B
A ⊆ B A ⊇ B

Table 2. Lookups made in the Hypothesis Stack (A is always known, B known for 6=)

The following Prolog clauses contain a small part of the check finite predi-
cate responsible for proving the B finite predicate. The first argument is the B
expression which is the argument to the finite operator, the second argument is
the hypothesis stack while the third argument is a proof tree constructed by the
prover (for subsequent inspection or validation).

1 check_finite(bool_set ,_,bool_set) :- !.
2 check_finite(empty_set ,_,empty_set) :- !.
3 check_finite(intersection(A,B),Hyps ,intersection(D,PT)) :- !,
4 ( D=left , check_finite(A,Hyps ,PT) -> true
5 ; D=right ,check_finite(B,Hyps ,PT)).
6 check_finite(set_subtraction(A,_),Hyps ,set_subtraction(PT)) :- !,
7 check_finite(A,Hyps ,PT).
8 check_finite(range(A),Hyp ,ran(PT)) :- !, check_finite(A,Hyp ,PT).

Listing 1.3. Some Prolog clauses for checking the finite B predicate

The clauses encode the axioms finite(BOOL) and finite(∅) as well as the
proof rules that finite(A ∩ B) holds if either finite(A) or finite(B) and that
finite(A \B) or finite(ran(A)) hold if finite(A).

The proof rules and derived Prolog clauses are written such that matching
of B predicates (like intersection or set subtraction above) always occur at
the top-level of the formulas. This ensures that we can use efficient and simple
Prolog unification for the proof rules and that Prolog’s argument indexing often
results in constant time lookup of possible matching proof rules.

B Predicates handled by the Prover

A ⊆ B A ∈ B
A ≤ B A 6= B

A ∈ T 7→ T ′ (functional)
A−1 ∈ T 7→ T ′ (injective)
A ∈ seq(T ) (is sequence)

finite(T )
dom(A) = D dom(A) ⊆ D′

ran(A) = R ran(A) ⊆ R′

Table 3. Prolog prover predicates, where T and T ′ are maximal type sets
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Ensuring Termination To avoid useless rewrites, our prover contains local loop
checks within the predicates of Table 3. Some rewrites are also guarded by an
occurs check, to prevent rewriting x to something like rev(rev(x)). Finally, a
depth bound limits the number of equality and subset rewrites applicable within
a particular proof or sub-proof. Currently the bound is set to allow 5 rewrites;
increasing this bound only minimally increases the number of POs discharged
in Section 5.3.

Implementation within ProB The prover has been integrated into the ProB
validation tool. On the one hand, this has eased the implementation, as part
of ProB’s infrastructure (parser, typechecker, static rewriter) could be re-used.
For the rules concerning substitutions (Sect. 3), we also reused the code for com-
puting written variables. On the other hand, we also plan to use the output of
the prover for ProB’s constraint solver; see Section 6. Finally, this also enabled
to make the prover available within rodin, as part of the ProB-Disprover plu-
gin. This is particularly useful for discharging POs which pose problems to other
provers (e.g., for min, max and card). Existing integrations with editors, such
as Atom and VSCode could also be easily extended to highlight potential WD
issues.

5 Benchmarks

Below we provide a variety of benchmarks. Section 5.1 contains artificial bench-
marks to measure scalability compared with Atelier-B and rodin. In Sect. 5.2
we examine a few specific POs extracted as regression tests, while in Sect. 5.3
we perform a more exhaustive evaluation on over 6000 models from the ProB
examples repository. All experiments were run on a MacBook Pro with 2.8 GHz
i7 processor, 16GB of RAM and running macOS 10.14.6. For the experiments
we have used version 1.10.0-beta2 of the command-line version probcli with
the flags -wd-check -silent, which runs our PO generator and prover on the
provided model and prints a summary information (the -silent flag prevents
the output of source locations for the undischarged POs) available at:

https://www3.hhu.de/stups/downloads/prob/tcltk/releases/1.10.0-beta2/

5.1 Artificial Benchmarks

We next present the following artificial benchmark model template, where Nr is
parameter which we have instantiated to various values between 100 and 8000
below. Atelier-B generates 3Nr proof obligations while our implementation
generates 6Nr , as we check separately for every function application that ff is a
function and that the argument is in the domain of ff .

1 MACHINE FunNrWD
2 CONSTANTS ff
3 PROPERTIES
4 /* axm0 */ ff : 1 .. Nr --> 1 .. 90
5 & /* axm1 */ ff(1) < 100
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6 & /* axm2 */ ff(2) < 100
7 ...
8 & /* axmNr */ ff(Nr) < 100
9 & /* axm_nest_1 */ ff(ff(1)) < 100

10 ...
11 & /* axm_nest_Nr */ ff(ff(Nr)) < 100
12 INITIALISATION skip
13 END

Listing 1.4. Artificial Benchmark Template

AtelierB We have loaded the above model into the 64-bit version 4.6.0-rc4 of
Atelier-B for macOS. The timings for Atelier-B were obtained using a stop-
watch, after the models had been loaded and typechecked. The timings of our im-
plementation were taken within ProB, using walltime for the total time needed
to generate and discharge the POs. The time needed to parse and load and
typecheck the machine was not measured for either tool.

Atelier-B ProB WD
Nr POG Proof F0 Discharged POG + Proof Discharged

100 4 sec 13 sec 100 % 0.035 sec 100 %
200 40 sec 62 sec 100 % 0.041 sec 100 %
500 error - 0 % 0.058 sec 100 %

1000 error - 0 % 0.083 sec 100 %
2000 error - 0 % 0.139 sec 100 %
4000 error - 0 % 0.252 sec 100 %
8000 error - 0 % 0.478 sec 100 %

Table 4. Artificial WD Benchmark FunNrWD (classical B)

For Nr=100 and Nr=200 our implementation is a few orders of magnitude
faster. Atelier-B ran into a “memory overflow (max expansion reached)” in
default settings for Nr=200. After increasing the “m” parameter by a factor of
100 we managed to generate the proof obligations for Nr=200. But for Nr=500
we were not successful (4.25 GB memory were used; error generated after about
90 seconds, we tried to increase the memory allowance as much as the UI would
let us).

Note that the first run of the WD prover within ProB is always a bit slower
(probably due to JIT startup time). Indeed, the second run of the WD prover is
considerably faster (18 ms for Nr=200). This is beneficial when checking multiple
models (such as in Sect. 5.3) or when ProB is left open while working on a model.

Rodin We encoded the above B machines in Event-B and used rodin version
3.4. We used a stop watch to measure the POG (building) time and the auto
prover time (“Retry Auto Provers” command).

As Table 5 shows, rodin is initially slower than Atelier-B, but is able to
process larger models. However, the proving time is quite considerable as every
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rodin ProB WD
Nr POG Auto Prover Discharged POG + Proof Discharged

100 3 secs 2 min 28 sec 49.5 % 0.036 sec 100 %
200 8.5 sec 6 min 05 sec 24.5 % 0.044 sec 100 %
500 47 sec 17 min 10 sec 9.7 % 0.063 sec 100 %

1000 1 min 25 sec +/- 45 min 5.2 % 0.121 sec 100 %

Table 5. Artificial WD Benchmark FunNrWD (Event-B)

proof obligation is sent to a new instance of the provers. For Nr=100 it is about
an order of magnitude slower than Atelier-B and three orders of magnitude
slower than our technique, and discharges only half of the POs. For Nr=1000
it is about 23,000 times slower than our technique. We did try to prove some of
the POs in rodin by hand. For axm110 pp needs to be interrupted but ml and
Z3 can be used to prove it. For axm nest 999 the ml prover fails, Z3, veriT, and
CVC4 run into timeouts and pp needs to be interrupted.

5.2 A few selected POs

The regression test 2018 of ProB contains 189 well-defined formulas which were
collected from existing models, leading to 413 POs. Of course this test is biased,
as it contains the regression tests for our prover. However, these regression tests
were usually extracted from existing models, and were written to cover a large
class of typical WD situations arising in practice. Here we wish to show that our
prover does treat some naturally occurring WD POs better than the standard
provers mono-lemma ml and the predicate prover pp in their default settings.

For the experiments we used ProB’s atelierb provers interface module which
calls krt with the options -a m1500000 -p rmcomm. The results are summarised in
Table 6. Our prover discharges all 413 POs in 47 ms, with a maximum walltime
of 5 ms per PO. The maximum walltime of ml was about 18 seconds for the PO

f : 1,3,5,7,9 --> 1,3,5,7,9 => 5 : dom(f).
If we deduct the minimum walltime of 0.26 sec of ml (which is probably due to
the overhead of starting a new ml for each PO) we obtain a runtime of around
45 seconds for all POs.

For pp some POs seemed to run into an infinite loop and we interrupted the
prover on 18 occasions, e.g., for the PO

10 / f(a) = 10 / a & a : NATURAL1 & b : NATURAL &

f : NATURAL1 --> NATURAL1 => b + 1 : dom(f).
The longest successful run of pp was around 49 sec for the PO

x’ : 2 .. 8 => %x.(x : 2 .. 8|10 / x) : (INTEGER) +-> (INTEGER).
pp was not able to prove e.g. the POs

s : perm(1 .. 10) => s : (INTEGER) +-> (INTEGER)

x : POW(1 .. 2) => finite(x).
We have also tried to use Z3 4.8.8 via the translation [23] available in ProB.

This translation does not support sequences and all B operators, and also un-
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fortunately terminated after 23 POs (with an uncaught “datatype is not well-
founded” exception). We tried to selectively skip over some POs, without success.
In future it would be good to try the translation to SMTLib from [14] (but which
would not support sequences either).

Prover Proved Unproved Ctrl-C Min. Max. Total w/o Min.

ProB-WD 413 0 0 0.000 sec 0.006 sec 0.047 sec 0.047 sec

ml 190 223 0 0.260 sec 18.725 sec 152.633 sec 45.253 sec

pp 230 165 0.092 sec 49.144 sec 222.940 sec 186.600 sec
18 1017.406 sec -

Z3 9 14 0 0.007 sec 2.520 sec crash -

Table 6. POs Extracted from ProB Regression Tests

5.3 Benchmarks from ProB Examples

The ProB source code is accompanied by a large selection of models, which are
used for regression tests. In a recent effort, the public part of these models have
been made available for reproducible benchmark efforts and other research uses
at: https://github.com/hhu-stups/specifications

For this article we have extracted the parseable and type-correct B and Event-
B specifications to evaluate our tool. The scripts to run our tool are available
in the folder benchmarks/well-definedness of the above repository. The sum-
mary is in Table 7; the detailed results for the 2579 B and 760 Event-B models
can be found in the above repository. We also ran the experiments on the pri-
vate B machines (.mch files) and Event-B files in the ProB examples. These are
summarised in Table 8.

Formalism Files Total POs Discharged Perc. Runtime Avg. per File

B 2579 106784 90357 84.62 % 4.46 secs 1.7 ms
Event-B 760 42824 38847 90.71 % 1.10 secs 1.4 ms

Table 7. ProB WD on Public Benchmarks using ProB Examples

Formalism Files Total POs Discharged Perc. Runtime Avg. per File

B 3370 354769 288968 81.45 % 38.67 secs 11.5 ms
Event-B 145 32647 27202 83.32 % 1.01 secs 7.0 ms

Table 8. ProB WD on Private Benchmarks from ProB Examples
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The performance exceeded our initial hopes and one could run this analysis
as part of the ProB loading process without users noticing a delay: 82.9 % of
the more than half a million POs from 6000 models were discharged in less than
50 seconds. For the public Event-B models the tool managed to discharge over
30000 POs per second. The maximum runtime was 0.310 secs for one file (a
formal model of the Z80 processor with many equalities in the invariants).

The precision of the analysis is also very satisfactory. For many models 100 %
of the POs are discharged, e.g. all 114 for a Paxos model by Abrial or all 118 for
MovingParticles, an encoding [25] of an ASM machine in Event-B (whose WD
POs which are tedious to discharge in rodin). The analysis has also uncovered
a considerable number of real well-definedness issues in existing models. In terms
of the true POs, the discharge percentage of our tool should be noticeably higher.
Indeed, we checked the unproven POs of the public Event-B models with ml; it
managed to discharge only 7 % of them (i.e., an additional 0.55% overall).

6 Discussions and Outlook

Explanations for Performance What can explain the big performance difference
of our tool compared to Atelier-B and rodin? Some reasons have already been
mentioned earlier:

– the combined PO generation and proving in one go definitely reduces some
overhead,

– no overhead of calling an external prover (relevant compared to rodin),
– no need to transmit or load hypotheses for a PO, all hypotheses are pre-

compiled on the stack,
– efficient popping of hypotheses using Prolog’s backtracking,
– only logarithmic hypotheses lookups are performed in the prover and useless

hypotheses are not stored in stack.
Part of the performance also comes from the special nature of WD POs.

Indeed, one could try to implement our proof rules as custom proof rules for ml,
which would probably boost its benchmark results. Indeed, Atelier-B uses the
theory language to express proof rules, which can be viewed as domain specific
logic “programming language” tailored to B and proof. While Atelier-B comes
with a custom developed compiler — the Logic Solver — it seems like it cannot
compete with state-of-the-art Prolog compilers. A small experiment consisted
in summing the numbers from 1..500000 in the theory language (written by
Thierry Lecomte) and in Prolog. Using krt in Atelier-B 4.3.1 this task runs
in over 6 seconds, while SICStus Prolog perform the same task in 0.001 seconds.
Thus some of the performance is certainly due to implementing our proof rules
in Prolog. The drawback of Prolog is that it has more limited matching (i.e.,
unification), namely only at the top-level of a Prolog term. This meant that we
had to repeat some rewriting rules multiple times (for each predicate in Table 3).

rodin uses external provers such as ml, pp or Z3 [14], and also the TOM
rewriting library[6]. rodin’s internal sequent prover, however, seems to have
been developed using hand-written matching, which is probably much less ef-
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ficient than in Prolog or a dedicated term rewriting system. The hand-written
solution is also very verbose: the equivalent of the last line 8 of our Prolog prover
in Listing 1.3 is a file FiniteRan.java5 with 82 lines of code (9 lines are copy-
right notice). The Prolog code is also very flexible (e.g., it can be used for finding
proofs but also for re-playing or checking proofs if the proof tree argument is
provided).

We are not the first to use Prolog to implement a prover [7, 15, 29]. An open
question is whether using term rewriting [19] would be an even better approach.
As mentioned above, Prolog unification is more limited, but very efficient.6

Within a term rewriting system we could simplify our prover code, possibly
use AC unification and avoid duplication of rewrite rules. An interesting topic
for future research would be to port our prover to such a term rewriting system
(like Maude).

WD and Constraint Solving Well-definedness is important for constraint solving
in ProB’s kernel. Indeed, constraint propagation can be much more effective if
one assumes well-definedness. Take for example the predicate x ∈ 1..10 ∧ y ≥
0∧ z = x÷ y ∧ z > 10. If we assume well-definedness of x÷ y, we can infer that
z ∈ 1..10 and hence realise that the constraint has no solution. If on the other
hand, we wish to detect WD errors, the constraint solver has to delay until it
knows whether y is 0 or not. In case y = 0 one can produce an error message,
and if y > 0 the constraint is unsatisfiable. The detection of well-definedness
errors is made more complicated by the fact that a solver does not necessarily
treat predicates from left-to-right.

This is the reason many constraint solvers ignore well-definedness errors (see
also [16]). E.g., in SMTLib or the finite domain constraint library CLP(FD) of
SICStus Prolog, a division by zero simply results in an unsatisfiable predicate
(and not in an error).This is not the approach used by ProB: it tries to detect
well-definedness errors, but unfortunately is not guaranteed to detect all WD
errors, because some of the checks would be prohibitively expensive at solving
time. Particularly, within nested set comprehensions such well-definedness issues
can cause unexpected results. The techniques of this article will allow us to
implement a much better approach:

– if all WD POs are discharged, we know that no WD errors can arise. We can
then perform stronger constraint propagations in the ProB kernel.

– if not all WD POs are discharged, we can turn full WD checking at runtime
for those places where the POs have not been discharged.

Outlook Concerning our proof obligation generator we plan to extend as needed
to cover substitutions in classical B more precisely. Full coverage will, however,

5 See FiniteRan.java in org.eventb.internal.core.seqprover.eventbExtensions

at https://sourceforge.net/p/rodin-b-sharp/rodincore
6 The missing occurs check in Prolog is not an issue, because we use the ground

representation for the B formulas, and hence any variable in a proof rule is always
instantiated to a ground term.
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also require a full implementation of the weakest-precondition computation. The
generator is currently tailored for use within ProB; for usage outside of ProB,
we will need to allow to preserve the interleaved exact order of theorems and
invariants for rodin models or the order of included invariants in B. It would also
be benefical to extract the proof status information from rodin and Atelier-
B; this will further improve performance and precision and give users a fallback
solution in case our prover is not powerful enough.

The prover itself can be further improved, in particular cycle detection can
be made more efficient. We also plan to provide a “strength” option to enable
more non-deterministic proof rules, at the cost of runtime. The quantifier in-
stantiations and treatment of implications can also be extended.

It would be useful to visualize the proof tree constructed by our tool, and
display the useful hypotheses for a particular PO. The proof tree could also be
checked by a second tool, for validation purposes. Similar to what was done for
ml, we could also attempt to prove all our rewrite rules using another prover.

About 10 years ago Abrial proposed [4] an outline for a new improved prover
P3 for the B method. The results of this paper could be an encouragement to
try and develop this successor to ml and pp using Prolog, possibly incorporating
ideas from SMT solvers into the Prolog prover as shown in [18, 28]. Maybe our
approach could also be used to provide an easily extensible, yet efficient prover,
for rodin’s theory plugin [10].

Summary In summary, we have developed a new fast and effective integrated
proof obligation generator and prover for well-definedness. It can deal with B
sequences and with various extensions of the B language. It has been integrated
into the ProB validation tool, and is able to analyse formal models effectively
and quickly, with average runtimes below 0.01 seconds for over 6000 benchmark
models. Our technique is orders of magnitude faster than existing implementa-
tions in Atelier-B and rodin. The output of our tool can be inspected either
within ProB or within the Atom and VSCode editors, which proved to be useful
to detect a considerable number of errors in existing models. The prover is also
available in rodin via ProB’s Disprover [22] plugin. In future, the output of the
prover will be used by ProB’s constraint solver to improve performance and to
better detect well-definedness errors at solving time.
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A Screenshots and Links

Instructions for running well-definedness checking in ProB can be found at:
https://www3.hhu.de/stups/prob/index.php/Well-Definedness Checking.
The source code of the well-definedness proof obligation generator and prover is
available in the files well def analyser.pl, well def hyps.pl, well def prover.pl

as part of ProB’s source code:
https://www3.hhu.de/stups/prob/index.php/Download#Sourcecode.
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Fig. 1. B/ProB Plugin for VisualCode, highlighting undischarged WD POs. There are
missing invariants about T which prevent discharging the POs.

Fig. 2. Display of undischarged WD POs in the ProB2-UI. The author of the model
was unaware that the guard of the first SELECT cannot be used to prove the POs in
question.
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Fig. 3. Display of WD POs in the ProB Tcl/Tk UI. Here all POs are discharged for a
machine involving a recursive function and sequence operators.
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