A Concise Summary of the Event-B mathematical toolkit ${ }^{1}$

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the ASCII form that is used for input to Rodin.

In the following: P, Q and R denote predicates;
x and y denote single variables;
z denotes a single or comma-separated list of variables;
p denotes a pattern of variables, possibly including \mapsto and parentheses;
S and T denote set expressions;
U denotes a set of sets;
m and n denote integer expressions;
f and g denote functions;
r denotes a relation;
E and F denote expressions;
E, F is a recursive pattern, $i e$ it matches e_{1}, e_{2} and also $e_{1}, e_{2}, e_{3} \ldots$; similarly for x, y;
Freeness: The meta-predicate $\neg f r e e(z, E)$ means that none of the variables in z occur free in E. This metapredicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases are: \neg free $(z, \forall z \cdot P \Rightarrow Q), \neg$ free $(z, \exists z \cdot P \wedge Q)$, \neg free $(z,\{z \cdot P \mid F\})$, \neg free $(z, \lambda z \cdot P \mid E)$, and free (z, z).
In the following the statement that P must constrain z means that the type of z must be at least inferrable from P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it attempts to do is to explain Event-B constructs. Some words like expression collide with the formal syntax. Where a syntactical entity is intended the word will appear in italics, e.g. expression, predicate.

1 Predicates

1. False \perp
false
2. True T
3. Conjunction: $P \wedge Q$

Left associative.
4. Disjunction: $P \vee Q$

Left associative.
5. Implication: $P \Rightarrow Q$
Non-associative: this means that $P \Rightarrow Q \Rightarrow P$ P \Rightarrow Pust be parenthesised or an error will be diagnosed.
6. Equivalence: $P \Leftrightarrow Q$

P $\ll \mathrm{Q}$. $P \Longleftrightarrow Q=P \Rightarrow Q \wedge Q \Rightarrow P$
Non-associative: this means that $P \Leftrightarrow Q \Leftrightarrow R$ must be parenthesised or an error will be diagnosed.
7. Negation: $\neg P$
not P
8. Universal quantification:
$\forall z \cdot P \Rightarrow Q$
! z. P => Q

Strictly, $\forall z \cdot P$, but usually an implication.
For all values of z, satisfying P, Q is satisfied.
The types of z must be inferrable from the predicate P.
9. Existential quantification:
$\exists z \cdot P \wedge Q$
\#z.P \& Q
Strictly, $\exists z \cdot P$, but usually a conjunction.
There exist values of z, satisfying P, that satisfy Q.
The type of z must be inferrable from the predicate P.
10. Equality: $E=F$

11. Inequality: $E \neq F$

2 Sets

1. Singleton set: $\{E\}$
2. Set enumeration: $\{E, F\}$
$\{\mathrm{E}, \mathrm{F}\}$
See note on the pattern E, F at top of summary.
3. Empty set: \varnothing
4. Set comprehension: $\{z \cdot P \mid F\}\left\{\begin{array}{l}\mathrm{z} \cdot \mathrm{P} \mid \mathrm{F}\} \\ \hline\end{array}\right.$ General form: the set of all values of F for all values of z that satisfy the predicate $P . P$ must constrain the variables in z.
5. Set comprehension: $\{F \mid P\} \quad\{\mathrm{F} \mid \mathrm{P}\}$

Special form: the set of all values of F that satisfy the predicate P. In this case the set of bound variables z are all the free variables in F.
$\{F \mid P\}=\{z \cdot P \mid F\}$, where z is all the variables in F.
6. Set comprehension: $\{x \mid P\} \quad\{\mathrm{x} \mid \mathrm{P}\}$

A special case of item 5: the set of all values of x that satisfy the predicate P.
$\{x \mid P\}=\{x \cdot P \mid x\}$
7. Union: $S \cup T$

8. Intersection: $S \cap T$

9. Difference: $S \backslash T$

$S \backslash T=\{x \mid x \in S \wedge x \notin T\}$
10. Ordered pair: $E \mapsto F$

$E \mapsto F \neq(E, F)$
Left associative.
In all places where an ordered pair is required,

[^0]$E \mapsto F$ must be used. E, F will not be accepted as an ordered pair, it is always a list. $\{x, y \cdot P \mid x \mapsto y\}$ illustrates the different usage.
11. Cartesian product: $S \times T$
$S \times T=\{x \mapsto y \mid x \in S \wedge y \in T\}$
Left-associative.
12. Powerset: $\mathbb{P}(S)$
$\mathbb{P}(S)=\{s \mid s \subseteq S\}$
13. Non-empty subsets: $\mathbb{P}_{1}(S)$
$\mathbb{P}_{1}(S)=\mathbb{P}(S) \backslash\{\varnothing\}$
14. Cardinality: $\operatorname{card}(S)$

Defined only for finite (S).
15. Generalized union: union (U)
union(U)
The union of all the elements of U.
$\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$
union $(U)=\{x \mid x \in S \wedge \exists s \cdot s \in U \wedge x \in s\}$
where \neg free (x, s, U)
16. Generalized intersection: inter(U) inter (U) The intersection of all the elements of U.
$U \neq \varnothing$,
$\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$
inter $(U)=\{x \mid x \in S \wedge \forall s \cdot s \in U \Rightarrow x \in s\}$
where \neg free (x, s, U)
17. Quantified union:
$\cup z \cdot P \mid S$

> | UNION z.P | S |
| :--- | :--- |

P must constrain the variables in z.
$\forall z \cdot P \Rightarrow S \subseteq T \Rightarrow$
$\cup(z \cdot P \mid E)=\{x \mid x \in T \wedge \exists z \cdot P \wedge x \in S\}$
where \neg free $(x, z, T), \quad \neg$ free $(x, P), \quad \neg$ free (x, S), \neg free (x, z)
18. Quantified intersection:
$\cap z \cdot P \mid S$
INTER z.P | S
P must constrain the variables in z,
$\{z \mid P\} \neq \varnothing$,
$(\forall z \cdot(P \Rightarrow S \subseteq T)) \Rightarrow$
$\cap z \cdot P \mid S=\{x \mid x \in T \wedge(\forall z \cdot P \Rightarrow x \in S)\}$
where $\quad \neg$ free $(x, z), \quad \neg$ free $(x, T), \quad \neg$ free (x, P), \neg free (x, S).

2.1 Set predicates

1. Set membership: $E \in S$

E : S
2. Set non-membership: $E \notin S$
3. Subset: $S \subseteq T$
4. Not a subset: $S \nsubseteq T$
5. Proper subset: $S \subset T$

E /: S

S < : T

6. Not a proper subset: $s \not \subset t$

7. Finite set: finite (S)
finite $(S) \Leftrightarrow S$ is finite.
8. Partition: partition (S, x, y) partition($\mathrm{S}, \mathrm{x}, \mathrm{y}$) x and y partition the set S, ie $S=x \cup y \wedge x \cap y=\varnothing$ Specialised use for enumerated sets: partition $(S,\{A\},\{B\},\{C\})$. $S=\{A, B, C\} \wedge A \neq B \wedge B \neq C \wedge C \neq A$

3 BOOL and bool

BOOL is the enumerated set: \{FALSE, TRUE\} and bool is defined on a predicate P as follows:

1. P is provable: $\operatorname{bool}(P)=$ TRUE
2. $\neg P$ is provable: $\operatorname{bool}(P)=$ FALSE

4 Numbers

The following is based on the set of integers, the set of natural numbers (non-negative integers), and the set of positive (non-zero) natural numbers.

1. The set of integer numbers: \mathbb{Z}
2. The set of natural numbers: \mathbb{N}
3. The set of positive natural numbers: \mathbb{N}_{1} NAT1 $\mathbb{N}_{1}=\mathbb{N} \backslash\{0\}$
4. Minimum: $\min (S)$
$S \subset \mathbb{Z}$ and finite (S) or S must have a lower bound.
5. Maximum: $\max (S)$
$\max (\mathrm{S})$
$S \subset \mathbb{Z}$ and finite (S) or S must have an upper bound.
6. Sum: $m+n$

7. Difference: $m-n$

$n \leq m$
8. Product: $m \times n$

9. Quotient: m / n

$n \neq 0$
10. Remainder: $m \bmod n$
$m \bmod n$ $n \neq 0$
11. Interval: $m . . n$

$m \ldots n=\{i \mid m \leq i \wedge i \leq n\}$

4.1 Number predicates

1. Greater: $m>n$
2. Less: $m<n$

3. Greater or equal: $m \geq n$

4. Less or equal: $m \leq n$

5 Relations

A relation is a set of ordered pairs; a many to many mapping.

1. Relations: $S \leftrightarrow T$
S <-> T
$S \leftrightarrow T=\mathbb{P}(S \times T)$
Associativity: relations are right associative: $r \in X \leftrightarrow Y \leftrightarrow Z=r \in X \leftrightarrow(Y \leftrightarrow Z)$.
2. Domain: $\operatorname{dom}(r)$
$\operatorname{dom}(r)$
$\forall r \cdot r \in S \leftrightarrow T \Rightarrow$
$\operatorname{dom}(r)=\{x \cdot(\exists y \cdot x \mapsto y \in r)\}$
3. Range: $\operatorname{ran}(r)$
$\operatorname{ran}(r)$
$\forall r \cdot r \in S \leftrightarrow T \Rightarrow$
$\operatorname{ran}(r)=\{y \cdot(\exists x \cdot x \mapsto y \in r)\}$
4. Total relation: $S \leftrightarrow T$
if $r \in S \leftrightarrow \leftrightarrow T$ then $\operatorname{dom}(r)=S$
5. Surjective relation: $S \leftrightarrow T$
if $r \in S \leftrightarrow T$ then $\operatorname{ran}(r)=T$
6. Total surjective relation: $S \leftrightarrow<T \quad \mathrm{~S}$ <<->> T if $r \in S \leftrightarrow \leftrightarrow T$ then $\operatorname{dom}(r)=S$ and $\operatorname{ran}(r)=T$
7. Forward composition: $p ; q$
$\forall p, q \cdot p \in S \leftrightarrow T \wedge q \in T \leftrightarrow U \Rightarrow$ $p ; q=\{x \mapsto y \mid(\exists z \cdot x \mapsto z \in p \wedge z \mapsto y \in q)\}$
8. Backward composition: $p \circ q$ $p \circ q=q ; p$
9. Identity: id
$S \triangleleft \mathrm{id}=\{x \mapsto x \mid x \in S\}$.
$i d$ is generic and the set S is inferred from the context.
10. Domain restriction: $S \triangleleft r$ $S \triangleleft r=\{x \mapsto y \mid x \mapsto y \in r \wedge x \in S\}$.
11. Domain subtraction: $S \notin r$

S <<1r
$S \notin r=\{x \mapsto y \mid x \mapsto y \in r \wedge x \notin S\}$.
12. Range restriction: $r \triangleright T$
$r \triangleright T=\{x \mapsto y \mid x \mapsto y \in r \wedge y \in T\}$.
13. Range subtraction: $r \otimes T$

$r \triangleright T=\{x \mapsto y \mid y \in r \wedge y \notin T\}$.
14. Inverse: r^{-1}
$r^{-1}=\{y \mapsto x \mid x \mapsto y \in r\}$.
15. Relational image: $r[S]$
$r[S]=\{y \mid \exists x \cdot x \in S \wedge x \mapsto y \in r\}$.
16. Overriding: $r_{1} \nleftarrow r_{2}$
r1 <+ r2
$r_{1} \nLeftarrow r_{2}=r_{2} \cup\left(\operatorname{dom}\left(r_{2}\right) \nLeftarrow r_{1}\right)$.
17. Direct product: $p \otimes q$
p> q
$p \otimes q=\{x \mapsto(y \mapsto z) \mid x \mapsto y \in p \wedge x \mapsto z \in q)\}$.
18. Parallel product: $p \| q$
p \| \|
$p \| q=\{x, y, m, n \cdot x \mapsto m \in p \wedge y \mapsto n \in q \mid(x \mapsto$ $y) \mapsto(m \mapsto n)\}$.
19. Projection: prj_{1}
prj_{1} is generic.
$(S \times T) \triangleleft \operatorname{prj}_{1}=\{(x \mapsto y) \mapsto x \mid x \mapsto y \in S \times T\}$.
20. Projection: prj $_{2}$
prj_{2} is generic.
$(S \times T) \triangleleft \operatorname{prj}_{2}=\{(x \mapsto y) \mapsto y \mid x \mapsto y \in S \times T\}$.

5.1 Iteration and Closure

Iteration and closure are important functions on relations that are not currently part of the kernel Event-B language. They can be defined in a Context, but not polymorphically.
Note: iteration and irreflexive closure will be implemented in a proposed extension of the mathematical language. The operators will be non-associative.

1. Iteration: r^{n}
$r \in S \leftrightarrow S \Rightarrow r^{0}=S \triangleleft \mathrm{id} \wedge r^{n+1}=r ; r^{n}$.
Note: to avoid inconsistency S should be the finite base set for r, ie the smallest set for which all $r \in S \leftrightarrow S$.
Could be defined as a function iterate $(r \mapsto n)$.
2. Reflexive Closure: r^{*}
$r^{*}=\cup n \cdot\left(n \in \mathbb{N} \mid r^{n}\right)$.
Could be defined as a function rclosure (r).
Note: $r^{0} \subseteq r^{*}$.
3. Irreflexive Closure: r^{+}
$r^{+}=\cup n \cdot\left(n \in \mathbb{N}_{1} \mid r^{n}\right)$.
Could be defined as a function iclosure (r).
Note: $r^{0} \nsubseteq r^{+}$by default, but may be present depending on r.

5.2 Functions

A function is a relation with the restriction that each element of the domain is related to a unique element in the range; a many to one mapping.

1. Partial functions: $S \rightarrow T \quad \mathrm{~S}+->\mathrm{T}$ $S \rightarrow T=\left\{r \cdot r \in S \leftrightarrow T \wedge r^{-1} ; r \subseteq T \triangleleft \mathrm{id}\right\}$.
2. Total functions: $S \rightarrow T \quad$ S --> T $S \rightarrow T=\{f \cdot f \in S \rightarrow T \wedge \operatorname{dom}(f)=S\}$.
3. Partial injections: $S \rightarrow T \quad \mathrm{~S} \mathrm{>+>} \mathrm{~T}$ $S \nrightarrow T=\left\{f \cdot f \in S \rightarrow T \wedge f^{-1} \in T \rightarrow S\right\}$. One-to-one relations.
4. Total injections: $S \hookrightarrow T$ $S \mapsto T=S \mapsto T \cap S \rightarrow T$.
5. Partial surjections: $S \rightarrow T \quad \mathrm{~S}+-\gg \mathrm{T}$
$S \rightarrow T=\{f \cdot f \in S \rightarrow T \wedge \operatorname{ran}(f)=T\}$.
Onto relations.
6. Total surjections: $S \rightarrow T$

S -->> T
$S \rightarrow T=S \rightarrow T \cap S \rightarrow T$.
7. Bijections: $S \mapsto T$

S >->> T
$S \hookrightarrow T=S \mapsto T \cap S \rightarrow T$.
One-to-one and onto relations.
8. Lambda abstraction:
$(\lambda p \cdot P \mid E)$
(\%p.P|E)
P must constrain the variables in p.
$(\lambda p \cdot P \mid E)=\{z \cdot P \mid p \mapsto E\}$, where z is a list of variables that appear in the pattern p.
9. Function application: $f(E)$
$E \mapsto y \in f \Rightarrow E \in \operatorname{dom}(f) \wedge f \in X \rightarrow Y$, where type $(f)=\mathbb{P}(X \times Y)$.
Note: in Event-B, relations and functions only ever have one argument, but that argument may be a pair or tuple, hence $f(E \mapsto F)$ f(E |-> F) $f(E, F)$ is never valid.

6 Models

1. Contexts: contain sets and constants used by other contexts or machines.

CONTEXT

EXTENDS SETS
CONSTANTS
AXIOMS Predicates
END
Note: theorems can be presented in the AXIOMS part of a context.
2. Machines: contain events.

MACHINE	Identifier
REFINES	Machine_Identifiers
SEES	Context_Identifiers
VARIABLES	Identifiers
INVARIANT	Predicates
VARIANT	Expression
EVENTS	Events
END	

Note: theorems can be presented in the INVARIANT section of a machine and the WHERE part of an event.

6.1 Events

Event_name	
REFINES	Event_identifiers
ANY	Identifiers
WHERE	Predicates
WITH	Witnesses
THEN	Actions
END	

There is one distinguished event named INITIALISATION used to initialise the variables of a machine, thus establishing the invariant.

6.2 Actions

Actions are used to change the state of a machine. There may be multiple actions, but they take effect concurrently, that is, in parallel. The semantics of events are defined in terms of substitutions. The substitution $[G] P$ defines a predicate obtained by replacing the values of the variables in P according to the action G. General substitutions are not available in the Event-B language.
Note on concurrency: any single variable can be modified in at most one action, otherwise the effect of the actions would, in general, be inconsistent.

1. skip, the null action:
skip denotes the empty set of actions for an event.
2. Simple assignment action: $z:=E \quad \mathrm{x}:=\mathrm{E}$ $:==$ "becomes equal to": replace free occurrences of x by E.
3. Choice from set: $x: \in S$
$\mathrm{x}:: \quad \mathrm{S}$ $: \in=$ "becomes in": arbitrarily choose a value from the set S.
4. Choice by predicate: $z: \mid P$
:| = "becomes such that": arbitrarily choose values for the variable in z that satisfy the predicate P. Within P, x refers to the value of the variable x before the action and x^{\prime} refers to the value of the variable after the action.
5. Functional override: $f(x):=E \quad \mathrm{f}(\mathrm{x}):=\mathrm{E}$ Substitute the value E for the function/relation f at the point x.
This is a shorthand:
$f(x):=E=f:=f \notin\{x \mapsto E\}$.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and corrections at various stages of the evolution of this summary.

[^0]: ${ }^{1}$ Version January 23, 2014⑲96-2014 Ken Robinson

