A Concise Summary of the Event-B mathematical toolkit ¹

Each construct will be given in its presentation form, as displayed in the Rodin toolkit, followed by the ASCII form that is used for input to Rodin.

In the following: P, Q and R denote predicates;

- x and y denote single variables;
- z denotes a single or comma-separated list of variables;
- p denotes a pattern of variables, possibly including \mapsto and parentheses;
- S and T denote set expressions;
- U denotes a set of sets;
- m and n denote integer expressions;
- f and g denote functions;
- r denotes a relation;
- E and F denote expressions;
- E, F is a recursive pattern, ie it matches e_1, e_2 and also $e_1, e_2, e_3 \dots$; similarly for x, y;

Freeness: The meta-predicate $\neg free(z, E)$ means that none of the variables in z occur free in E. This meta-predicate is defined recursively on the structure of E, but that will not be done here explicitly. The base cases are: $\neg free(z, \forall z \cdot P \Rightarrow Q)$, $\neg free(z, \exists z \cdot P \land Q)$, $\neg free(z, \{z \cdot P \mid F\})$, $\neg free(z, \lambda z \cdot P \mid E)$, and free(z, z).

In the following the statement that P must constrain z means that the type of z must be at least inferrable from P.

In the following, parentheses are used to show syntactic structure; they may of course be omitted when there is no confusion.

Note: Event-B has a formal syntax and this summary does not attempt to describe that syntax. What it attempts to do is to *explain* Event-B *constructs*. Some words like *expression* collide with the formal syntax. Where a syntactical entity is intended the word will appear in *italics*, *e.g. expression*, *predicate*.

1 Predicates

- 1. False \perp false
- 2. True \top true
- 3. Conjunction: $P \wedge Q$ Left associative.
- 4. Disjunction: $P \lor Q$ Left associative.
- 5. Implication: $P\Rightarrow Q$ P $\Rightarrow \mathbb{Q}$ Non-associative: this means that $P\Rightarrow Q\Rightarrow R$ must be parenthesised or an error will be diagnosed.
- 6. Equivalence: $P \Leftrightarrow Q$ P $\iff Q = P \Rightarrow Q \land Q \Rightarrow P$ Non-associative: this means that $P \Leftrightarrow Q \Leftrightarrow R$ must be parenthesised or an error will be diagnosed.
- 7. Negation: $\neg P$ not P
- 8. Universal quantification: $\forall z \cdot P \Rightarrow Q \qquad \qquad \boxed{ !z.P \Rightarrow Q} \\ \text{Strictly, } \forall z \cdot P, \text{ but usually an implication.} \\ \textit{For all values of } z, \textit{ satisfying } P, \textit{ Q is satisfied.} \\ \text{The types of } z \text{ must be inferrable from the } \textit{predicate } P. \\ \end{cases}$
- 9. Existential quantification: $\exists z \cdot P \wedge Q \qquad \qquad \text{\#z.P \& Q} \\ \text{Strictly, } \exists z \cdot P \text{, but usually a conjunction.} \\ \textit{There exist values of } z, \textit{ satisfying } P, \textit{ that satisfy } Q. \\ \text{The type of } z \text{ must be inferrable from the } \textit{predicate} \\$
- 10. Equality: E = F
- 11. Inequality: $E \neq F$
- $^1\mathrm{Version}$ January 23, 2014©1996-2014 Ken Robinson

2 Sets

- 1. Singleton set: $\{E\}$
- 2. Set enumeration: $\{E, F\}$ See note on the pattern E, F at top of summary.
- 3. Empty set: \emptyset
- 4. Set comprehension: $\{z \cdot P \mid F\} \mid \{z \cdot P \mid F\} \}$ General form: the set of all values of F for all values of F that satisfy the *predicate* F. F must constrain the variables in F.
- 5. Set comprehension: $\{F \mid P\}$ Special form: the set of all values of \overline{F} that satisfy the *predicate* P. In this case the set of bound variables z are all the free variables in F. $\{F \mid P\} = \{z \cdot P \mid F\}$, where z is all the variables in F.
- 6. Set comprehension: $\{x \mid P\}$ $\{x \mid P\}$ A special case of item 5: the set of all values of x that satisfy the *predicate* P. $\{x \mid P\} = \{x \cdot P \mid x\}$
- 7. Union: $S \cup T$ S $\backslash \! /$ T
- 8. Intersection: $S \cap T$
- 9. Difference: $S \setminus T$ $S \setminus T = \{x \mid x \in S \land x \notin T\}$
- 10. Ordered pair: $E \mapsto F$ $E \mapsto F \neq (E, F)$ Left associative.
 In all places where an ordered pair is required,

 $E\mapsto F$ must be used. E,F will not be accepted as an ordered pair, it is always a list. $\{x,y\cdot P\mid x\mapsto y\}$ illustrates the different usage.

11. Cartesian product: $S \times T$ $S \times T = \{x \mapsto y \mid x \in S \land y \in T\}$ Left-associative.

14. Cardinality: card(S)

- 12. Powerset: $\mathbb{P}(S)$ $\mathbb{P}(S) = \{s \mid s \subseteq S\}$
- 13. Non-empty subsets: $\mathbb{P}_1(S)$ $\mathbb{P}_1(S) = \mathbb{P}(S) \setminus \{\emptyset\}$
- Defined only for finite(S).

 15. Generalized union: union(U) union(U)

 The union of all the elements of U.
- The union of all the elements of U. $\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ union $(U) = \{x \mid x \in S \land \exists s \cdot s \in U \land x \in s\}$ where $\neg free(x, s, U)$
- 16. Generalized intersection: inter(U) Inter(U)

 The intersection of all the elements of U. $U \neq \emptyset$, $\forall U \cdot U \in \mathbb{P}(\mathbb{P}(S)) \Rightarrow$ inter(U) = $\{x \mid x \in S \land \forall s \cdot s \in U \Rightarrow x \in s\}$ where $\neg free(x, s, U)$

2.1 Set predicates

- 2. Set non-membership: $E \notin S$
- 4. Not a subset: $S \not\subseteq T$ S /<: T
- 5. Proper subset: $S \subset T$ S <<: T
- 6. Not a proper subset: $s \not\subset t$
- 7. Finite set: finite(S) finite(S) \Leftrightarrow S is finite.
- 8. Partition: partition(S, x, y) partition(S,x,y) x and y partition the set S, ie $S = x \cup y \land x \cap y = \varnothing$ Specialised use for enumerated sets: $partition(S, \{A\}, \{B\}, \{C\})$. $S = \{A, B, C\} \land A \neq B \land B \neq C \land C \neq A$

3 BOOL **and** bool

BOOL is the enumerated set: $\{FALSE, TRUE\}$ and bool is defined on a predicate P as follows:

- 1. P is provable: bool(P) = TRUE
- 2. $\neg P$ is provable: bool(P) = FALSE

4 Numbers

S ** T

card(S)

The following is based on the set of integers, the set of natural numbers (non-negative integers), and the set of positive (non-zero) natural numbers.

- 1. The set of integer numbers: \mathbb{Z} INT
- 2. The set of natural numbers: \mathbb{N}
- 3. The set of positive natural numbers: \mathbb{N}_1 $\mathbb{N}_1 = \mathbb{N} \setminus \{0\}$
- 4. Minimum: $\min(S)$ \max \max have a lower bound.
- 5. Maximum: $\max(S)$ $\sum S \subset \mathbb{Z}$ and finite(S) or S must have an upper bound.
- 6. Sum: m+n
- 7. Difference: m-n $n \le m$
- 8. Product: $m \times n$
- 9. Quotient: m/n $n \neq 0$
- 10. Remainder: $m \mod n$ $n \neq 0$
- 11. Interval: $m \dots n$ $m \dots n = \{ i \mid m \le i \land i \le n \}$

4.1 Number predicates

- 1. Greater: m > n
- 2. Less: m < n
- 3. Greater or equal: $m \ge n$
- 4. Less or equal: $m \le n$

5 Relations

A relation is a set of ordered pairs; a many to many mapping.

- 1. Relations: $S \leftrightarrow T$ $S \leftrightarrow T = \mathbb{P}(S \times T)$ Associativity: relations are right associative: $r \in X \leftrightarrow Y \leftrightarrow Z = r \in X \leftrightarrow (Y \leftrightarrow Z)$.
- 2. Domain: dom(r) $\forall r \cdot r \in S \leftrightarrow T \Rightarrow dom(r) = \{x \cdot (\exists y \cdot x \mapsto y \in r)\}$
- 3. Range: $\operatorname{ran}(r)$ $\forall r \cdot r \in S \leftrightarrow T \Rightarrow$ $\operatorname{ran}(r) = \{y \cdot (\exists x \cdot x \mapsto y \in r)\}$

- 4. Total relation: $S \leftrightarrow T$ if $r \in S \leftrightarrow T$ then $\mathrm{dom}(r) = S$
- 5. Surjective relation: $S \leftrightarrow T$ if $r \in S \leftrightarrow T$ then $\operatorname{ran}(r) = T$
- 6. Total surjective relation: $S \Leftrightarrow T$ if $r \in S \Leftrightarrow T$ then dom(r) = S and ran(r) = T
- 7. Forward composition: p; q $\forall p, q \cdot p \in S \leftrightarrow T \land q \in T \leftrightarrow U \Rightarrow p$; $q = \{x \mapsto y \mid (\exists z \cdot x \mapsto z \in p \land z \mapsto y \in q)\}$
- 8. Backward composition: $p \circ q$ p circ q $p \circ q = q$; p
- 9. Identity: id $S \lhd \mathrm{id} = \{x \mapsto x \mid x \in S\}.$ id is generic and the set S is inferred from the context.
- 10. Domain restriction: $S \triangleleft r$ $S \triangleleft r = \{x \mapsto y \mid x \mapsto y \in r \land x \in S\}.$
- 11. Domain subtraction: $S \triangleleft r$ $S \triangleleft r = \{x \mapsto y \mid x \mapsto y \in r \land x \notin S\}.$
- 12. Range restriction: $r \rhd T$ $r \rhd T = \{x \mapsto y \mid x \mapsto y \in r \land y \in T\}.$
- 13. Range subtraction: $r \triangleright T$ $r \triangleright T = \{x \mapsto y \mid y \in r \land y \notin T\}.$
- 14. Inverse: r^{-1} $r^{-1} = \{ y \mapsto x \mid x \mapsto y \in r \}.$
- 15. Relational image: r[S] $r[S] = \{y \mid \exists x \cdot x \in S \land x \mapsto y \in r\}.$
- 17. Direct product: $p \otimes q$ $p \sim q$ $p \sim q = \{x \mapsto (y \mapsto z) \mid x \mapsto y \in p \land x \mapsto z \in q)\}.$
- 18. Parallel product: $p \parallel q$ $p \parallel q = \{x, y, m, n \cdot x \mapsto m \in p \land y \mapsto n \in q \mid (x \mapsto y) \mapsto (m \mapsto n)\}.$
- 19. Projection: prj_1 prj_1 is generic. $(S \times T) \lhd \operatorname{prj}_1 = \{(x \mapsto y) \mapsto x \mid x \mapsto y \in S \times T\}.$
- 20. Projection: prj_2 $\operatorname{prj}_2 \text{ is generic.}$ $(S \times T) \lhd \operatorname{prj}_2 = \{(x \mapsto y) \mapsto y \mid x \mapsto y \in S \times T\}.$

5.1 Iteration and Closure

Iteration and closure are important functions on relations that are not currently part of the kernel Event-B language. They can be defined in a Context, but not polymorphically.

Note: iteration and irreflexive closure will be implemented in a proposed extension of the mathematical language. The operators will be non-associative.

- 1. Iteration: r^n $r \in S \leftrightarrow S \Rightarrow r^0 = S \lhd \operatorname{id} \wedge r^{n+1} = r$; r^n . Note: to avoid inconsistency S should be the finite base set for r, ie the smallest set for which all $r \in S \leftrightarrow S$. Could be defined as a function $iterate(r \mapsto n)$.
- 2. Reflexive Closure: r^* $r^* = \bigcup n \cdot (n \in \mathbb{N} \mid r^n)$. Could be defined as a function rclosure(r). Note: $r^0 \subseteq r^*$.
- 3. Irreflexive Closure: r^+ $r^+ = \cup n \cdot (n \in \mathbb{N}_1 \mid r^n)$. Could be defined as a function iclosure(r). Note: $r^0 \not\subseteq r^+$ by default, but may be present depending on r.

5.2 Functions

A function is a relation with the restriction that each element of the domain is related to a unique element in the range; a many to one mapping.

- 1. Partial functions: $S \to T$ $S \to T = \{r \cdot r \in S \leftrightarrow T \land r^{-1} ; r \subseteq T \lhd \mathrm{id}\}.$
- 2. Total functions: $S \to T$ $S \longrightarrow T = \{f \cdot f \in S \to T \land \text{dom}(f) = S\}.$
- 3. Partial injections: $S \nrightarrow T$ $S \nrightarrow T = \{f \cdot f \in S \nrightarrow T \land f^{-1} \in T \nrightarrow S\}.$ One-to-one relations.
- 4. Total injections: $S \rightarrow T$ $S \rightarrow T = S \rightarrow T \cap S \rightarrow T$.
- 5. Partial surjections: $S \twoheadrightarrow T$ $S \twoheadrightarrow T = \{f \cdot f \in S \rightarrow T \land \operatorname{ran}(f) = T\}.$ Onto relations.
- 6. Total surjections: $S \to T$ $S \to T = S + T \cap S \to T$.
- 7. Bijections: $S \rightarrow\!\!\!\!\rightarrow T$ $S \rightarrow\!\!\!\!\rightarrow T = S \rightarrow\!\!\!\!\rightarrow T \cap S \rightarrow\!\!\!\!\rightarrow T.$ One-to-one and onto relations.
- 9. Function application: f(E) $E \mapsto y \in f \Rightarrow E \in \text{dom}(f) \land f \in X \Rightarrow Y$, where $type(f) = \mathbb{P}(X \times Y)$. **Note:** in Event-B, relations and functions only ever have one argument, but that argument may be a pair or tuple, hence $f(E \mapsto F)$ $f(E \mid -> F)$ f(E, F) is never valid.

6 Models

1. Contexts: contain sets and constants used by other contexts or machines.

CONTEXT Identifier

EXTENDS Machine_Identifiers

SETS Identifiers CONSTANTS Identifiers AXIOMS Predicates

END

Note: theorems can be presented in the AXIOMS part of a context.

2. Machines: contain events.

MACHINE Identifier

REFINES Machine_Identifiers SEES Context_Identifiers

VARIABLES Identifiers
INVARIANT Predicates
VARIANT Expression
EVENTS Events

END

Note: theorems can be presented in the INVARI-ANT section of a machine and the WHERE part of an event.

6.1 Events

Event_name

REFINES Event_identifiers

ANY Identifiers
WHERE Predicates
WITH Witnesses
THEN Actions

END

There is one distinguished event named *INITIALISA-TION* used to initialise the variables of a machine, thus establishing the invariant.

6.2 Actions

Actions are used to change the state of a machine. There may be multiple actions, but they take effect concurrently, that is, in parallel. The semantics of events are defined in terms of *substitutions*. The substitution [G]P defines a predicate obtained by replacing the values of the variables in P according to the action G. General substitutions are not available in the Event-B language.

Note on concurrency: any single variable can be modified in at most one action, otherwise the effect of the actions would, in general, be inconsistent.

- 1. skip, the null action: skip denotes the empty set of actions for an event.
- 2. Simple assignment action: z := E x := E := = "becomes equal to": replace free occurrences of <math>x by E.
- 3. Choice from set: $x :\in S$ x :: S $:\in =$ "becomes in": arbitrarily choose a value from the set S.
- 4. Choice by predicate: z:|P| z:|P|: |z:|P|: |z:
- 5. Functional override: f(x) := E Substitute the value E for the function/relation f at the point x.

 This is a shorthand: $f(x) := E = f := f \Leftrightarrow \{x \mapsto E\}$.

Acknowledgement: Jean-Raymond Abrial, Laurent Voisin and Ian Hayes have all given valuable feedback and corrections at various stages of the evolution of this summary.